
Springer Nature 2021 LATEX template

Modeling and Formal Analysis of Virtually Synchronous

Cyber-Physical Systems in AADL

Jaehun Lee1, Kyungmin Bae1*, Peter Csaba Ölveczky2, Sharon Kim3 and
Minseok Kang1

1* Pohang University of Science and Technology, Pohang, South Korea.
2 University of Oslo, Oslo, Norway.

3 Korea Shipbuilding & Offshore Engineering, Seoul, South Korea.

*Corresponding author(s). E-mail(s): kmbae@postech.ac.kr;
Contributing authors: thkighie1224@postech.ac.kr; peterol@ifi.uio.no;

saron.kim@ksoe.co.kr; masonkang@postech.ac.kr;

Abstract

This paper presents the HybridSynchAADL modeling language and formal analysis tool for vir-
tually synchronous cyber-physical systems with complex control programs, continuous behaviors,
and bounded clock skews, network delays, and execution times. We leverage the Hybrid PALS
methodology, so that it is sufficient to model and verify the much simpler underlying syn-
chronous designs. We define the HybridSynchAADL language as a sublanguage of the avionics
modeling standard AADL for modeling such synchronous designs in AADL. We define the for-
mal semantics of HybridSynchAADL using Maude with SMT solving, which allows us to represent
advanced control programs and communication features in Maude, while capturing timing uncer-
tainties and continuous behaviors symbolically with SMT solving. We have developed new general
methods for optimizing the performance of such symbolic rewriting, which makes the analy-
sis of HybridSynchAADL models feasible. We have integrated the formal modeling and analysis
of HybridSynchAADL models into the OSATE tool environment for AADL. Finally, we demon-
strate the effectiveness of the Hybrid PALS methodology and HybridSynchAADL on a number
of applications, including autonomous drones that collaborate to achieve common goals, and
compare the performance of our tool with other state-of-the-art formal tools for hybrid systems.

Keywords: cyber-physical systems, virtual synchrony, AADL, formal methods, model checking, Maude, SMT

1 Introduction

Many cyber-physical systems (CPSs) are virtu-
ally synchronous. They should logically behave
as if they were synchronous—in each iteration
of the system, all components, in lockstep, read
inputs and perform transitions which generate

outputs for the next iteration—but have to be re-
alized in a distributed setting, with clock skews
and message passing communication. Examples of
virtually synchronous CPSs include avionics and
automotive systems [1–3], networked medical de-
vices [4, 5], and other distributed control systems
such as the steam-boiler controller benchmark [6].

1

Springer Nature 2021 LATEX template

2 Formal Analysis of CPSs in AADL

The underlying infrastructure of such critical sys-
tems typically guarantees bounds on clock skews,
network delays, and execution times.

Virtually synchronous CPSs are notoriously
hard to design—due to race conditions, mes-
sage buffering, etc.—and to model check, because
of the state space explosion caused by asyn-
chronous communication. Motivated by an avion-
ics application developed at Rockwell Collins, the
PALS (“physically asynchronous, logically syn-
chronous”) formal pattern reduces the difficulty of
modeling and verifying distributed real-time sys-
tems to the much easier tasks of modeling and
verifying their underlying synchronous designs, as
long as the infrastructure provides bounds on net-
work delays, clock skews, and execution times [7–
9]. The key point of PALS is that a synchronous
design SD—where all components execute in
lockstep and there is no asynchronous message
passing, clock skews, or execution times—is stut-
tering bisimilar to, and therefore satisfies the same
properties as, the corresponding asynchronous dis-
tributed “implementation” PALS (SD). The pa-
per [9] shows the effectiveness of the PALS “syn-
chronizer” on the above avionics case study: the
synchronous model had 185 reachable states and
could be model checked in less than a second,
whereas model checking even a very simplified
corresponding asynchronous system—with perfect
local clocks, no execution times, and message
delays being either 0 or 1—was infeasible.1

PALS abstracts from the time when an event
takes place, as long as it happens in a certain time
interval. However, many virtually synchronous
CPSs are networks of hybrid components with
continuous behaviors combined with sophisticated
controllers. In such systems, we can no longer ab-
stract from the time when a controller reads a
continuous value or sends an actuator command.
Hybrid PALS [10] extends PALS to such virtually
synchronous distributed hybrid systems, taking
into account sensing and actuating times that
depend on imprecise local clocks.

This paper targets the following main chal-
lenges for using the Hybrid PALS methodology to
formally model and analyze industrial CPSs with
continuous behaviors:

1If, in addition, all message delays are 0, then the asyn-
chronous system has more than 3 million reachable states, and
its model checking takes more than 30 minutes.

1. To enable formal analysis of (virtually) syn-
chronous2 industrial hybrid CPSs, the mod-
eling language for such CPSs should be
well-known for CPS developers.

2. Providing a formal semantics and efficient
formal analysis methods for such a language,
with complex discrete control programs inter-
acting with continuous environments at times
depending on imprecise local clocks.

3. Both modeling and intuitive automatic for-
mal analysis should be integrated into indus-
trial modeling environments.

To address Challenge (1), we identify a “syn-
chronous” subset of the industrial modeling stan-
dard AADL [11] for embedded systems, and define
the HybridSynchAADL language for conveniently
modeling (virtually) synchronous distributed hy-
brid systems. HybridSynchAADL is a subset of
AADL and its Behavior Annex [12], where the
meaning of the constructs in HybridSynchAADL
is the same as in AADL, which means that Hybrid-
SynchAADL should be an easy and intuitive
language for the AADL modeler.

Concerning Challenge (2), providing a formal
semantics to such models—with control programs
written in AADL’s expressive Behavior Annex,
with continuous behaviors, and having to cover
all possible sampling and actuation times based
on imprecise clocks—is challenging. The seman-
tics of control programs can be specified using
existing frameworks for defining programming lan-
guage semantics, but these techniques usually do
not consider continuous behaviors. On the other
hand, typical semantic frameworks for continu-
ous behaviors, such as hybrid automata, are not
good at defining the discrete semantics of con-
ventional programming languages like AADL’s
Behavior Annex.

In this paper, we use the rewriting-logic-
based tool Maude [13] combined with SMT solv-
ing [14, 15] to symbolically encode continuous
behaviors with all possible sampling and actu-
ating times depending on imprecise clocks, and
provide a Maude-with-SMT semantics for Hybrid-
SynchAADL. The discrete semantics of control

2Although we present HybridSynchAADL in the context of
Hybrid PALS, our language and tool can more generally be
used to model and formally analyze any “synchronous” CPSs
with continuous local environments that are sampled/actuated
based on imprecise local clocks.

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 3

programs is specified using Maude, and the con-
tinuous semantics of physical environments is en-
coded using SMT. Nontrivial interactions between
controllers and environments are precisely defined
in our Maude-with-SMT semantics.

As usual in symbolic approaches [16], symbolic
analysis with Maude-with-SMT quickly encoun-
ters the symbolic state-space explosion problem.
We address this problem in two ways to make sym-
bolic analysis feasible. First, we propose a modular
encoding to symbolically eliminate the interleav-
ings of different components due to interactions
between environments and controllers. Second,
our semantics is optimized with a novel state-
space reduction technique, adapted from [15],
which merges symbolic states to significantly im-
prove the performance of symbolic analysis. This
state merging optimization is especially effective
for complex programs with many branches and
guarded transitions.

Regarding Challenge (3), the HybridSynch-
AADL tool supports the modeling and formal
analysis of HybridSynchAADL models inside the
OSATE tool environment for AADL. Our tool
provides an intuitive property specification lan-
guage for specifying bounded reachability prop-
erties. HybridSynchAADL invokes Maude com-
bined with the SMT solver Yices2 [17] to provide
symbolic reachability analysis, randomized simu-
lation, and multithreaded portfolio analysis for an-
alyzing bounded reachability properties of Hybrid-
SynchAADL models with polynomial continuous
dynamics.

We use our tool to model and verify a number
of CPS applications, including networks of ther-
mostats and of water tanks, as well as distributed
drones that communicate to reach the “same” lo-
cation, or fly in formation, without crashing into
each other. We evaluate, and demonstrate, the
effectiveness of the HybridSynchAADL tool by
addressing the following questions:

• How effective is our tool compared to state-
of-the-art formal CPS analysis tools?

• How effective is our portfolio analysis method
in finding bugs, compared to randomized sim-
ulation and symbolic reachability analysis?

• How effective is our state merging technique?
• How effective is Hybrid PALS in model check-

ing virtually synchronous CPSs?
HybridSynchAADL is one of few, if any,

tools—certainly in an AADL context—that can

formally analyze the important class of virtually
synchronous CPSs with typical CPS features such
as complex control programs, continuous behav-
iors, and arbitrary but bounded communication
delays, clock skews, and execution times. This is
made possible by:

• Hybrid PALS, which reduces the formal anal-
ysis of a virtually synchronous CPS to that of
its synchronous design—albeit having to con-
sider clock skews and sensing and actuating
times.

• The integration of Maude with SMT solving.
Maude is suitable to analyze complex con-
trol programs, with user-definable data types,
distributed objects, asynchronous communi-
cation, and so on, whereas SMT solving
allows us to symbolically analyze continuous
behaviors and imprecise clocks.

HybridSynchAADL combines these techniques to
provide an expressive and user-friendly formal
modeling and analysis framework for virtually
synchronous CPSs that is optimized to make
formal analysis feasible. The HybridSynchAADL
tool, the full semantics, and the benchmarks
are available at the tool web page https://
hybridsynchaadl.github.io.

Apart from providing significantly more detail,
this paper extends our conference tool paper [18]
as follows:

• It presents the formal semantics of Hybrid-
SynchAADL, including discrete/continuous
behaviors and modular encoding.

• It describes our symbolic state space merging
technique, which makes our symbolic analysis
feasible.

• It defines the semantics of the property speci-
fication language and the analysis commands.

• It includes additional experiments to evaluate
the effectiveness of HybridSynchAADL.

The rest of this paper is organized as fol-
lows. Section 2 gives some background on Hybrid
PALS, AADL, and Maude with SMT. Section 3
introduces the HybridSynchAADL modeling lan-
guage. Section 4 explains how HybridSynchAADL
components can be symbolically represented as
Maude-with-SMT terms. Sections 5 and 6 de-
fine the semantics of, respectively, discrete and
continuous behaviors of HybridSynchAADL mod-
els in Maude-with-SMT. Section 6 also explains
the modular encoding to symbolically eliminate
the controller-environment interleavings. Section 7

https://hybridsynchaadl.github.io
https://hybridsynchaadl.github.io

Springer Nature 2021 LATEX template

4 Formal Analysis of CPSs in AADL

presents the HybridSynchAADL tool and its user
interface, its property specification language, and
explains how Maude and SMT solving can verify
HybridSynchAADL models. As part of this, it also
explains our symbolic state merging technique for
making such symbolic analysis efficient. Section 8
shows a case study of how virtually synchronous
CPSs for controlling distributed drones can be
modeled and analyzed using HybridSynchAADL.
Section 9 presents the experimental evaluation
of our tool, including the comparison with other
formal CPS analysis tools. Finally, Section 10 dis-
cusses related work, and Section 11 gives some
concluding remarks.

2 Preliminaries

This section provides some necessary background
to Hybrid PALS, AADL, and Maude combined
with SMT solving.

2.1 Hybrid PALS

A number of “synchronizers for CPSs”—such as
TTA [19], PALS [7, 9], and their generalization
MSYNC [20]—and similar methods, such as quasi-
synchrony [21] and LTTA [22], aim at reducing the
model checking complexity, caused by interleav-
ing of the different communicating components, of
cyber-physical systems (CPSs) when the under-
lying infrastructure guarantees bounds on clock
skews and network delays.

In this paper we focus on PALS, which has
shorter period than TTA, has an extension to the
multi-rate setting [23], and is, to the best of our
knowledge, the only synchronizer for CPSs that
has been extended to CPSs with continuous dy-
namics. We refer to [20, 24] for a comparison of
TTA and PALS, and to [9] for a discussion relating
PALS to other kinds of synchronizers.

When the infrastructure guarantees bounds
on clock skews, network delays, and execution
times, the PALS (“physically asynchronous, log-
ically synchronous”) pattern [7–9], reduces the
problems of designing and verifying virtually syn-
chronous distributed real-time systems to the
much easier problems of designing and verifying
their underlying synchronous designs. Formally,
given a synchronous system design SD , bounds
Γ on clock skews, network delays, and execution

times, and a period p of each round,3 the PALS
transformation generates the asynchronous dis-
tributed real-time system PALS (SD ,Γ, p), which
is stuttering bisimilar to SD . The simple and easy-
to-model-check synchronous design SD therefore
satisfies the same CTL∗ formulas not involving the
“next” operator as the (asynchronous) distributed
“implementation” PALS (SD ,Γ, p).

The synchronous design SD is formalized as
the synchronous composition of an ensemble of
state machines with input and output ports [9]. In
each iteration (i.e., at the beginning of each “pe-
riod”), each machine performs a transition based
on its current state and its inputs, proceeds to
the next state, and generates outputs. All ma-
chines perform their transitions simultaneously,
and outputs become inputs at the next iteration.

Hybrid PALS [10] extends PALS to virtually
synchronous CPSs with physical environments
that exhibit continuous behaviors. The physical
environment EM of a machine M has real-valued
parameters ~x = (x1, . . . , xl). The continuous be-
haviors of ~x are modeled by a set of ordinary
differential equations (ODEs) that specify dif-
ferent trajectories on ~x. EM also defines which
trajectory the environment follows, as a function
of the last control command received by EM .

The local clock of a machine M can be seen
as a function cM : R≥0 → R≥0, where cM (t)
is the value of the local clock at time t, with
∀t ∈ R≥0, |cM (t) − t| < ε for ε > 0 the maximal
clock skew [9]. In its ith iteration, a controller M
has received all inputs from the other components
at time cM (i · p), when it starts the execution of
its ith iteration. The controller M then samples
the values of its environment at time cM (i ·p)+ ts,
where ts is the sampling time. It then executes
a transition (based on the sampled values, the
values received from other controllers, and the
controller’s own state). As a result, the new con-
trol command is received by the environment at
time cM (i · p) + ta, where ta is the actuating time.

In PALS, the time when an event takes place
does not matter, as long as it happens within
a certain time interval. However, in hybrid sys-
tems, we cannot abstract from the time when

3Given performance bounds Γ, PALS can find the shortest
period p that allows all nodes to read the messages in the
correct “rounds.”

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 5

a continuous value is read or an actuator com-
mand is given, and therefore those times must be
included also in the synchronous Hybrid PALS
models. Furthermore, since these events are trig-
gered by imprecise local clocks, we must also take
into account those clocks in the synchronous mod-
els. Although Hybrid PALS cannot abstract away
local clocks and timings, it nevertheless abstracts
from message buffering and asynchronous com-
munication between controllers, networks delays,
execution times, and so on.

We refer to [10] for the formal definitions
of Hybrid PALS synchronous and asynchronous
models, and for the precise relationship between
these models.

2.2 AADL

The Architecture Analysis & Design Language
(AADL) [11] is an industrial modeling standard
used in avionics, aerospace, automotive, medi-
cal devices, and robotics to describe an embed-
ded real-time system as an assembly of software
components mapped onto an execution platform.
AADL model development is supported by OS-
ATE4 (Open Source AADL Tool Environment),
which provides a modeling environment for AADL
as a set of Eclipse plug-ins.

An AADL component is defined by its type
and its implementation. A component type speci-
fies the component’s interface in terms of features
(e.g., ports) and properties (e.g., periods). A com-
ponent implementation specifies the component’s
internal structure as a set of subcomponents, a
set of connections linking their ports, and a set
of modes that represent operational states of
components.

An AADL construct may have properties de-
scribing its parameters and other information. A
property has a name, a type, and a value, and can
be assigned a value using a property association
declaration (property => value;). The value of a
property may depend on the current mode of the
component (property => value1 in modes (mode1),
..., valuek in modes (modek);). A number of
properties are predefined in AADL. Additional
domain-specific properties can be declared using
property sets.

4https://osate.org/

An AADL model describes a system of hard-
ware and software components. This paper fo-
cuses on the software components, because we
use AADL to specify synchronous designs.5 Soft-
ware components include threads that model the
application software to be executed; process com-
ponents defining protected memory that can be
accessed by its thread and data subcomponents;
and data components representing data types.
System components are the top-level components.

A port is either a data port, an event port, or
an event data port. Event ports and event data
ports support queuing of, respectively, “events”
and message data, while data ports only keep the
latest data. Furthermore, a port is either an in-
put or an output port. A connection between two
ports can be either immediate or delayed ; the se-
mantics is somewhat subtle (see [11] for details),
but an immediate connection roughly means that
the source thread sends the event/data as soon as
it can, whereas in a delayed connection the source
thread sends it at the end of its period.

Modes represent the operational states of com-
ponents. A component can have mode-specific
property values, subcomponents, connections, etc.
A mode transition m1 -[e]-> m2 from mode m1

to mode m2 is triggered by the event e; that is, by
the arrival of an event at port e.

Thread behavior is modeled as a guarded tran-
sition system with local variables using AADL’s
Behavior Annex [12] standard. Given finite sets of
states and local variables, the behavior of a thread
is defined by a set of state transitions of the form
s -[guard]-> s′ {actions}, where s and s′ are
states, and where guard is a Boolean condition on
the values of the local variables and/or the pres-
ence of events or data in the thread’s input ports.
The actions performed when a transition is ap-
plied may update the local variables, call methods,
generate new outputs, and/or suspend the thread.
Actions are built from basic actions using sequenc-
ing, conditionals, and finite loops. When a thread
is activated, an enabled transition is nondetermin-
istically selected and applied; if the resulting state
s′ is not a complete state, another transition is
applied, until a complete state is reached.

5Hardware components include: processor components that
schedule and execute threads, memory components, device
components, and bus components that interconnect processors,
memory, and devices.

https://osate.org/

Springer Nature 2021 LATEX template

6 Formal Analysis of CPSs in AADL

The dispatch protocol of a thread determines
when a thread is executed: a periodic thread is
activated at fixed time intervals (given by its prop-
erty Period), and an aperiodic thread is activated
when it receives an event.

2.3 Maude with SMT

Maude [13] is a rewriting-logic-based executable
formal specification language and analysis tool for
concurrent systems. In Maude, system states are
modeled as elements of algebraic data types, spec-
ified using equational specifications. Transitions
between states are specified using (possibly con-
ditional) rewrite rules. Maude provides a range of
formal analysis methods, including rewriting for
simulation, (explicit-state) search for reachability
analysis, LTL model checking, and various forms
of theorem proving [25]. Maude recently has been
integrated with SMT solving to perform symbolic
reachability analysis of infinite-state systems [26].

2.3.1 Rewriting Logic and Maude

An (order-sorted) equational logic signature Σ is a
triple (S,≤,Σ), where S is a set (of sorts), ≤ is a
partial order, the subsort relation, on S, and Σ =
Σ = {Σw,s}(w,s)∈S∗×S an order-sorted signature
(i.e., f ∈ Σs1 s2, s3 denotes a function f : s1×s2 →
s3). The set TΣ,s denotes the set of ground Σ-
terms with sort s, and TΣ(X)s denotes the set
of Σ-terms with sort s over the set X of sorted
variables, so that any term of sort s is also a term
of sort s′ if s ≤ s′.

An (order-sorted) equational theory (Σ, E) is a
pair (Σ, E) with Σ a signature and E a finite set
of conditional equations of the form

(∀X) t = t′ if
∧

i

pi = qi

where t and t′ are terms having sorts in the same
connected component of (S,≤). In Maude, an in-
dividual equation in the condition may also be a
matching equation pl := ql, which is mathemati-
cally interpreted as an ordinary equation. How-
ever, operationally, the new variables occurring in
the term pl become instantiated by matching the
term pl against the canonical form of the instance
of ql (see [13] for further explanations).

A Maude module specifies a rewrite theory [27]
of the form (Σ, E ∪A,R), where:

1. (Σ, E∪A) is an equational logic theory speci-
fying the system’s state space as an algebraic
data type with A a set of equational ax-
ioms (such as a combination of associativity,
commutativity, and identity axioms), to per-
form equational deduction with the equations
E (oriented from left to right) modulo the
axioms A, and

2. R is a set of labeled conditional rewrite rules
specifying the system’s local transitions, each
of which has the form:

l : q −→ r if
∧

i

pi = qi ∧
∧

j

tj −→ t′j ,

where l is a label, and q, r are Σ-terms with
sorts in the same connected component. In-
tuitively, such a rule specifies a one-step
transition from a substitution instance of q
to the corresponding substitution instance of
r, provided the condition holds.6

We briefly summarize the syntax of Maude and
refer to [13] for more details. Sorts and subsort
relations are declared using the keywords sort
and subsort. Operators (or function symbols) are
introduced with the op keyword:

op f : s1 . . . sn -> s .

where s1 . . . sn are the sorts of its arguments,
and s is its sort. Operators can have user-definable
syntax, with underbars ‘_’ marking each of the
argument positions, such as in + . Some opera-
tors can have equational attributes, such as assoc,
comm, and id, stating that the operator is, respec-
tively, associative, commutative, and has a certain
identity element. Such attributes are then used by
the Maude engine to match terms modulo the de-
clared axioms. An operator can also be declared
to be a constructor (ctor) that defines the data
elements of a sort.

(Unconditional and conditional) equations and
rewrite rules, respectively, are introduced with the
following syntax:

eq u = v . ceq u = v if condition .

rl [l] : u => v . crl [l] : u => v if condition .

6A rewrite condition tj −→ t′j holds if (a substitution in-

stance of) t′j is reachable from (the substitution instance of)
tj in zero or more steps.

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 7

An equation f(t1, . . . , tn) = t with the owise (for
“otherwise”) attribute can be applied to a term
f(. . .) only if no other equation with left-hand side
f(u1, . . . , un) can be applied. The mathematical
variables in rules and equations are either explic-
itly declared with the keywords var and vars, or
can be introduced on the fly without being de-
clared previously, in which case they have the form
var:sort . Finally, a comment is preceded by ‘***’
or ‘---’ and lasts till the end of the line.

In object-oriented Maude specifications, a class
declaration class C | att1 : s1, . . . ,attn : sn
declares a class C of objects with attributes att1
to attn of sorts s1 to sn. An object instance of class
C is represented as a term

< O :C | att1 : v1, . . . , attn : vn >,

where O, of sort Oid, is the object’s identifier, and
where val1 to valn are the current values of the
attributes att1 to attn. A subclass inherits the
attributes and rewrite rules of its superclasses. A
message is a term of sort Msg. A system state is
modeled as a term of the sort Configuration, and
has the structure of a multiset made up of objects
and messages, where multiset union is denoted by
juxtaposition (empty syntax).

The dynamic behavior of a system is axioma-
tized by specifying each of its transition patterns
by a rewrite rule. For example, the rule (labeled l)

rl [l] : < O : C | a1 : 0, a2 : y, a3 : z >
=>

< O : C | a1 : z + 5, a2 : y, a3 : z > .

defines a family of transitions in which an object
O of class C updates the value of its attribute a1 to
z + 5 when it reaches 0. Attributes whose values do
not change and do not affect the next state, such
as a3 and a2, need not be mentioned in a rule, so
that the above can also be written

rl [l] : < O : C | a1 : 0, a3 : z >
=>

< O : C | a1 : z + 5 > .

Reachability Analysis in Maude. Maude pro-
vides a number of high-performance analysis
methods, including rewriting for simulation pur-
poses, explicit-state reachability analysis, and lin-
ear temporal logic (LTL) model checking. In this
paper, we use rewriting for randomized simula-
tions and reachability analysis to model check

invariant and reachability properties. Given an
initial state init , a state pattern pattern and an
(optional) condition cond , Maude’s search com-
mand searches the reachable state space from init
in a breadth-first manner for states that match
pattern such that cond holds:

search [bound,depth] init =>* pattern such that cond .

bound and depth provide upper bounds on, respec-
tively, the number of solutions to be found and
the number of rewrite steps from init . If bound
or depth is unbounded, we write search [,depth]
... and search [bound] ..., respectively.

2.3.2 Rewriting Modulo SMT

In rewriting modulo SMT [14, 15], (possibly infi-
nite) sets of system states can be symbolically rep-
resented using constrained terms. A constrained
term is a pair φ ‖ t of a constraint φ(x1, . . . , xn)
and a term t(x1, . . . , xn) over SMT variables
x1, . . . , xn, representing the set of all instances of
the pattern t such that φ holds: i.e., given the
underlying SMT theory T , we have:

Jφ ‖ tK = {t(a1, . . . , an) | T |= φ(a1, . . . , an)}.

A symbolic rewrite φt ‖ t ∗ φu ‖ u on con-
strained terms symbolically represents a (possibly
infinite) set of system transitions sequences. For a
symbolic rewrite φt ‖ t ∗ φu ‖ u, there exists
a “concrete” rewrite t′ −→∗ u′ (i.e., t′ rewrites to
u′ in zero or more steps) with t′ ∈ Jφt ‖ tK and
u′ ∈ Jφu ‖ uK, and vice versa for each t′ −→∗ u′
with t′ ∈ Jφt ‖ tK. Such symbolic rewrites can
be “implemented” using ordinary rewrite rules on
constrained terms of the following form [14]:

l : φ ‖ q −→ φ′ ‖ r if cond ∧ (T |= φ ∧ φ′)

In addition to its explicit-state analysis meth-
ods for concrete states (ground terms), Maude
provides SMT solving and symbolic reachability
analysis for constrained terms, using connections
to Yices2 [17] and CVC4 [28]. Maude supports
SMT theories for Booleans, integers, and reals
in the SMT-LIB standard [29], and provides the
check command to invoke the SMT solver. We
have implemented a function check-sat to check
the satisfiability of a given formula using check:

op check-sat : BoolExp -> Bool .

Springer Nature 2021 LATEX template

8 Formal Analysis of CPSs in AADL

property set Hybrid_SynchAADL is
Synchronous:

inherit aadlboolean applies to (system);
isEnvironment:

inherit aadlboolean applies to (system);
ContinuousDynamics:

aadlstring applies to (system);
Max_Clock_Deviation:

inherit Time applies to (system);
Sampling_Time:

inherit Time_Range applies to (system);
Response_Time:

inherit Time_Range applies to (system);
end Hybrid_SynchAADL;

Figure 1 The Hybrid SynchAADL property set.

3 The HybridSynchAADL
Modeling Language

This section presents the HybridSynchAADL lan-
guage for modeling virtually synchronous CPSs in
AADL. HybridSynchAADL is declared as a sub-
language of AADL extended with the property set
Hybrid SynchAADL shown in Figure 1. We use a
subset of AADL without changing the meaning
of AADL constructs or adding a new annex—the
subset has the same meaning for synchronous de-
signs and distributed implementations—so that
AADL experts can easily develop and understand
HybridSynchAADL models.

There are two ways of extending the lan-
guage in AADL: using property sets and using
annexes [11]. A property set can introduce new
properties (or annotations) within the standard
AADL syntax, whereas an annex allows defining
a language extension with new syntax. There are
AADL extensions for CPSs using the annex ap-
proach, such as [12, 30, 31]. We use the property
set approach because annotations are sufficient to
define most of the language features of Hybrid-
SynchAADL. The only exception is continuous
dynamics, which are declared using AADL strings.
Nonetheless, our tool can check the syntactic con-
straints, including continuous dynamics strings
(see Section 7.3). This choice of not introducing
a new annex is also in the spirit of HybridSynch-
AADL: it should be as easy as possible to use our
language for the AADL modeler; we try to achieve
this by minimizing the extension and having each
AADL construct have the same meaning in both
AADL and HybridSynchAADL.

HybridSynchAADL can specify synchronous
designs of distributed controllers (Section 3.1),
environments with continuous dynamics
(Section 3.2), and interactions between controllers
and environments involving imprecise local clocks
and sampling and actuating times (Section 3.3).
We use a networked thermostat system to
illustrate HybridSynchAADL (Section 3.4).

Before we start with controllers and environ-
ments, the top-level system component declares
the following properties to specify that the entire
system is a synchronous design with period T :

Hybrid_SynchAADL::Synchronous => true;
Period => T;

3.1 Controller Components

Discrete controllers are usual software compo-
nents in the Synchronous AADL subset [32, 33]. A
controller component is specified using the behav-
ioral and structural subset of AADL: hierarchical
system, process, thread components, data sub-
components; ports and connections; and thread
behaviors defined by the Behavior Annex [12]. The
hardware and scheduling features of AADL, which
are not relevant to synchronous designs, are not
considered in HybridSynchAADL.

The execution of a thread is specified by the
dispatch protocol. A thread with an event-triggered
dispatch (such as aperiodic dispatch) is dispatched
when it receives an event. Since all “controller”
components are executed in lock-step in Hybrid-
SynchAADL, each thread must have periodic dis-
patch so that it is dispatched at the beginning of
each period. The periods of all the threads are
identical to the period declared in the top-level
component. In AADL, this behavior is declared by
the thread component property:

Dispatch_Protocol => Periodic;

A controller receives the state of the envi-
ronment at some sampling time, and sends a
controller command to the environment at some
actuation time. Sampling and actuation take place
according to the local clock of the controller, which
may differ from the “ideal clock” by up to the max-
imal clock skew. These time values are declared
by the component properties:

Hybrid_SynchAADL::Max_Clock_Deviation => time;
Hybrid_SynchAADL::Sampling_Time => lbound .. ubound;

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 9

Hybrid_SynchAADL::Response_Time => lbound .. ubound;

The upper sampling bound must be strictly
smaller than the upper actuating bound, and the
lower actuating bound must be strictly greater
than the lower sampling bound. The upper bounds
of both sampling and actuating times must be
strictly smaller than the maximal execution time
to meet the (Hybrid) PALS constraints [10].

The initial values of data subcomponents and
output ports are specified using the property:

Data_Model::Initial_Value => ("value");

Sometimes initial values can be parameters, not
concrete values. E.g., it can be required that
some property must hold for any initial value of
a data subcomponent that satisfies certain con-
straints. Such unknown parameters are declared
using the predefined value param (see Figure 5 for
an example).

3.2 Environment Components

An environment component models real-valued
state variables that continuously change over time.
Such real-valued variables are specified using data
subcomponents of type Base_Types::Float. The
values of these data subcomponents change ac-
cording to their continuous dynamics, declared
using AADL constructs with the property set
Hybrid_SynchAADL. Each environment component
declares the component property:

Hybrid_SynchAADL::isEnvironment => true;

An environment component can have different
modes to specify different continuous behaviors
(trajectories). A controller command may change
the mode of the environment or the value of a
variable (a data subcomponent). The continuous
dynamics in each mode is specified using either
ODEs or continuous real functions as follows:

Hybrid_SynchAADL::ContinuousDynamics =>
"continuous dynamics1" in modes (mode1),
. . .

"continuous dynamicsn" in modes (moden);

Modes and mode transitions are declared in
the usual AADL way. An actuator command from
a controller component through an input port of
an environment can trigger a mode transition of
the environment, and can change the continuous
dynamics of the environment accordingly.

In HybridSynchAADL, a set of ODEs over n
variables x1, . . . , xn, say, dxi

dt = ei(x1, . . . , xn) for
i = 1, . . . , n, is written as a semicolon-separated
string of the following form, where ei denotes an
expression over these n variables and d/dt(xi)
denotes the derivative of variable xi:

d/dt(x1) = e1(x1, . . . , xn);
. . .

d/dt(xn) = en(x1, . . . , xn);

If a closed-form solution of ODEs is known, we
can directly specify concrete continuous functions,
which are parameterized by a time parameter t
and the initial values x1(0), . . . , xn(0) of the state
variables x1, . . . , xn for the current iteration at
time 0 as follows:

x1(t) = e1(t, x1(0), . . . , xn(0));
. . .

xn(t) = en(t, x1(0), . . . , xn(0));

Environments can include constant state vari-
ables that do not change continuously but can be
changed discretely through controller commands.
The dynamics of a constant variable, say x, can be
specified as d/dt(x) = 0 or x(t) = x(0), and can
be omitted in HybridSynchAADL.

Each environment component interacts with
discrete controllers by sending its state values,
and by receiving actuator commands that may up-
date the values of state variables or trigger mode
(and hence trajectory) changes. This behavior is
specified in HybridSynchAADL using connections
between ports and data subcomponents.

Consider a data subcomponent d inside an en-
vironment component E. A connection from d to
E’s output port o declares that the value of d is
“sampled” by a controller through the output port
o. A connection from E’s input port i to d declares
that a controller command arrived at the input
port i updates the value of d. Some input ports
of E may receive no value; in this case, the data
subcomponent of the environment is unchanged.

3.3 Communication

In HybridSynchAADL, connections are limited for
synchronous behaviors: no connection is allowed
between environments, or between environments
and the enclosing system components.

All (non-actuator) outputs of controller com-
ponents generated in an iteration are available to
the receiving controller components at the start of

Springer Nature 2021 LATEX template

10 Formal Analysis of CPSs in AADL

env1
power1

on1

off1

ctrl1temp1

send1

send2

env2ctrl2
power2

on2

off2

temp2

Figure 2 A networked thermostat system; filled triangles
denote data ports and hollow triangles denote event ports.

the next iteration. As explained in [32, 33], delayed
connections between data ports meet this require-
ment. Controller components can be connected
only by data ports with delayed connections,
declared by the connection property:

Timing => Delayed;

Interactions between an environment and a
controller occur instantaneously at the sampling
and actuating times of the controller. Since an
environment does not “actively” send data, each
output port of an environment must be a data
port, whereas its input ports could be of any kind.

3.4 An Example

Assume that two thermostats control the tem-
peratures in two different rooms. The goal is to
maintain similar temperatures in both rooms. For
this purpose, as shown in Figure 2, the controllers
communicate with each other over a network, and
turn the heaters on or off, based on the current
temperature of the room and the temperature of
the other room.

Figure 3 shows a top-level system compo-
nent TwoThermostats. This component includes
two thermostat controllers and their environments
as subcomponents. Each discrete controller ctrli
of room i ∈ {1, 2} is connected to its environ-
ment envi using four connections. The controllers
ctrl1 and ctrl2 are connected to each other with
delayed data connections send1 and send2.

Figure 4 and Figure 5 show a controller com-
ponent Thermostat that turns its heater on or off.
It has event output ports on_ctrl and off_ctrl,
data input ports curr and tin, and data output
ports set_power and tout, where the initial value
of tout is 0. The implementation has a data sub-
component avg whose initial value is declared to
be a parameter ("param").

When the thread dispatches, the transition
from state init to exec is taken, which updates
avg using the values of the input ports curr and

system TwoThermostats
end TwoThermostats;

system implementation TwoThermostats.impl
subcomponents

ctrl1: system Thermostat.impl;
ctrl2: system Thermostat.impl;
env1: system RoomEnv.impl;
env2: system RoomEnv.impl;

connections
temp1: port env1.temp -> ctrl1.curr;
on1: port ctrl1.on_ctrl -> env1.on_ctrl;
power1: port ctrl1.set_power -> env1.power;
off1: port ctrl1.off_ctrl -> env1.off_ctrl;
temp2: port env2.temp -> ctrl2.curr;
on2: port ctrl2.on_ctrl -> env2.on_ctrl;
power2: port ctrl2.set_power -> env2.power;
off2: port ctrl2.off_ctrl -> env2.off_ctrl;
send1: port ctrl1.tout -> ctrl2.tin;
send2: port ctrl2.tout -> ctrl1.tin;

properties
Hybrid_SynchAADL::Synchronous => true;
Period => 10 ms;
Timing => Delayed applies to send1, send2;

end TwoThermostats.impl;

Figure 3 A top level component.

tin, and assigns to the output port tout the value
of curr. Because exec is not a complete state, the
thread continues executing by taking one of the
other transitions. E.g., if avg is smaller than 10,
a command that sets the heater’s power to 10 is
sent through the port set_power, and an event is
sent through the event output port on_ctrl. The
resulting state init is a complete state, and the
execution of the current dispatch ends.

Figure 6 shows an environment component. It
has data output port temp, data input port power,
and event input ports on_ctrl and off_ctrl. The
implementation has two data subcomponents x
and p, denoting the temperature of the room and
the heater’s power, respectively, to represent the
state variables with the specified initial values.

There are two modes heaterOn and heaterOff
with their respective continuous dynamics, us-
ing continuous functions over time parameter t,
where heaterOff is the initial mode. The value of
the variable x change continuously according to
the mode and the continuous dynamics. On the
other hand, p is a constant state variable, and its
dynamics d/dt(p) = 0 is omitted.

The value of x is sent to the controller
through the output port temp, using the connec-
tion x -> temp. When a discrete controller sends

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 11

system Thermostat
features

on_ctrl: out event port;
off_ctrl: out event port;
set_power: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
curr: in data port Base_Types::Float;
tin: in data port Base_Types::Float;
tout: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0"); };
properties

Hybrid_SynchAADL::Max_Clock_Deviation => 0.3ms;
Hybrid_SynchAADL::Sampling_Time => 1ms .. 5ms;
Hybrid_SynchAADL::Response_Time => 7ms .. 9ms;

end Thermostat;

system implementation Thermostat.impl
subcomponents

ctrlProc: process ThermostatProc.impl;
connections

O1: port ctrlProc.on_ctrl -> on_ctrl;
O2: port ctrlProc.off_ctrl -> off_ctrl;
O3: port ctrlProc.set_power -> set_power;
O4: port ctrlProc.tout -> tout;
I1: port tin -> ctrlProc.tin;
I2: port curr -> ctrlProc.curr;

end Thermostat.impl;

process ThermostatProc
features

on_ctrl: out event port;
off_ctrl: out event port;
set_power: out data port Base_Types::Float;
curr: in data port Base_Types::Float;
tin: in data port Base_Types::Float;
tout: out data port Base_Types::Float;

end ThermostatProc;

process implementation ThermostatProc.impl
subcomponents

ctrlThread: thread ThermostatThread.impl;
connections

O1: port ctrlThread.on_ctrl -> on_ctrl;
O2: port ctrlThread.off_ctrl -> off_ctrl;
O3: port ctrlThread.set_power -> set_power;
O4: port ctrlThread.tout -> tout;
I1: port tin -> ctrlThread.tin;
I2: port curr -> ctrlThread.curr;

end ThermostatProc.impl;

Figure 4 A Thermostat component.

an actuation command through the input ports
power, on_ctrl, and off_ctrl, the mode changes
according to the mode transitions, and the value
of p can be updated with the value of the input
port power, declared by port power -> p.

thread ThermostatThread
features
on_ctrl: out event port;
off_ctrl: out event port;
set_power: out data port Base_Types::Float;
curr: in data port Base_Types::Float;
tin: in data port Base_Types::Float;
tout: out data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end ThermostatThread;

thread implementation ThermostatThread.impl
subcomponents
avg: data Base_Types::Float
{Data_Model::Initial_Value => ("param"); };

annex behavior_specification {**
states

init: initial complete state; exec: state;
transitions

init -[on dispatch]-> exec
{ avg := (tin + curr) / 2; tout := curr };

exec -[avg > 25]-> init { off_ctrl! };
exec -[avg < 20 and avg >= 10]-> init

{ set_power := 5; on_ctrl! };
exec -[avg < 10]-> init

{ set_power := 10; on_ctrl! };
**};

end ThermostatThread.impl;

Figure 5 A simple thermostat controller thread.

4 Maude Representation of
HybridSynchAADL Models

Section 3 introduces the HybridSynchAADL mod-
eling language and describes the meaning of this
language informally using English prose. To for-
mally analyze HybridSynchAADL models, such
models must have a precisely defined mathe-
matical meaning. This and the following two
sections therefore define such a formal seman-
tics for HybridSynchAADL using object-oriented
rewriting modulo SMT.

In particular, this section explains how a
HybridSynchAADL model, i.e., HybridSynch-
AADL components, are symbolically represented
as Maude terms with SMT constraints. Each com-
ponent in the HybridSynchAADL model is rep-
resented as an object; since HybridSynchAADL
models have a hierarchical structure, our seman-
tics is based on hierarchical objects, where an
attribute of an object may contain other objects.

Springer Nature 2021 LATEX template

12 Formal Analysis of CPSs in AADL

system RoomEnv
features
temp: out data port Base_Types::Float;
power: in data port Base_Types::Float;
on_ctrl: in event port;
off_ctrl: in event port;

properties
Hybrid_SynchAADL::isEnvironment => true;

end RoomEnv;

system implementation RoomEnv.impl
subcomponents
x: data Base_Types::Float

{Data_Model::Initial_Value => ("15");};
p: data Base_Types::Float

{Data_Model::Initial_Value => ("5");};
connections
C: port x -> temp;
R: port power -> p;

modes
heaterOff: initial mode;
heaterOn: mode;
heaterOff -[on_ctrl]-> heaterOn;
heaterOn -[off_ctrl]-> heaterOff;

properties
Hybrid_SynchAADL::ContinuousDynamics =>
"x(t) = x(0) - 0.1 * (x(0) - p / 0.1) * t;"

in modes (heaterOn),
"x(t) = x(0) * (1 - 0.1 * t);"

in modes (heaterOff);
end RoomEnv.impl;

Figure 6 A RoomEnv component.

4.1 Components

Each HybridSynchAADL component is repre-
sented as an instance of a subclass of the following
base class Component. The attribute features de-
notes a set of Port objects representing the ports
of the component; subcomponents denotes a set of
Component objects, representing the component’s
subcomponents; connections denotes its connec-
tions; and properties denotes its properties:

class Component | features : Configuration,
subcomponents : Configuration,
connections : Set{Connection},
properties : PropertyAssociation .

System, process, and thread group components
in AADL are represented as object instances of a
subclass of the following class Ensemble:

class Ensemble .
subclass Ensemble < Component .

class System .
class Process .

class ThreadGroup .
subclass System Process ThreadGroup < Ensemble .

Thread components are represented as ob-
ject instances of the following class Thread,
which adds attributes for representing the tran-
sition system that defines the thread’s behav-
iors using AADL’s Behavior Annex. The at-
tribute transitions denotes the set of transi-
tions; currState denotes the current state of the
transition system; completeStates denotes the
complete states; and variables denotes the local
(temporary) variables and their types:

class Thread | transitions : Set{Transition},
currState : Location,
completeStates : Set{Location},
variables : Map{VarId,DataType} .

subclass Thread < Component .

A thread transition is represented as a term
s -[guard]-> s′ {actions}, where s is a source
state, s′ is a destination state, guard is a guard
condition, and {actions} is an action block:

sort Transition .
op _-[_]->__ : Location TransGuard Location

ActionBlock -> Transition [ctor] .

Environment components are represented as
object instances of the class Env. The attribute
currMode denotes the current mode; flows repre-
sents the continuous dynamics in each mode, as
explained in Section 3.2; jumps denotes the mode
transitions; and sampling and response denote
the sets of sampling and actuating times, respec-
tively, for the controllers of the environment:

class Env | currMode : Location,
flows : Set{EnvFlow},
jumps : Set{EnvJump},
sampling : Set{InterTiming},
response : Set{InterTiming} .

subclass Env < Component .

A mode transition is represented as a term
m -[triggers]-> m′ of sort EnvJump, where m is
a source mode, m′ is a target mode, and triggers
is a set of port names:

sort EnvJump .
op _-[_]->_ : Location NeSet{FeatureRef} Location

-> EnvJump [ctor] .

The continuous dynamics for mode m is repre-
sented as a term m [dynamics] of sort EnvJump,
where dynamics is either ODEs or continuous
functions as explained in Section 3:

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 13

sorts AADLDiffEq AADLEnvFunc .
op d/dt[_]=_ : ComponentRef AADLExp

-> AADLDiffEq [ctor] .
op _(_)=_ : ComponentRef VarId AADLExp

-> AADLEnvFunc [ctor] .

sorts EnvFlow FlowItem .
op __ : Location FlowItem -> EnvFlow [ctor] .
op [_] : NeSet{AADLDiffEq} -> FlowItem [ctor] .
op [_] : NeSet{AADLEnvFunc} -> FlowItem [ctor] .

A sampling/actuating time is represented as a
term o : (l,u) of sort InterTiming, where o is an
object identifier of a controller, l is a lower time
bound, and u is an upper time bound:

sort InterTiming .
op _:(_,_) : ComponentId Rat Rat

-> InterTiming [ctor] .

Data components, which specify the state vari-
ables of threads and environments, are represented
as instances of the following class Data, where the
attribute value denotes the current value (sort
DataContent is explained in Section 4.3):

class Data | value : DataContent .
subclass Data < Component .

4.2 Ports and Connections

A port is represented as an instance of a subclass
of the base class Port, where the attribute content
denotes its data content, and properties denotes
its properties. The subclasses InPort and OutPort
denote input and output ports, respectively:

class Port | content : DataContent,
properties : PropertyAssociation .

class InPort .
class OutPort .
subclass InPort OutPort < Port .

We distinguish between the ports of controllers
and the ports of environments. As mentioned
in Section 3.3, the communication between con-
trollers is delayed (i.e., outputs produced in one
iteration are available at the destination in the
next iteration), whereas the communication be-
tween a controller and an environment happens in
the same iteration according to the sampling and
actuating times.

Controller ports are represented as instances of
the DataPort class. An input data port contains

the extra attribute cache to keep the previously
received value; if an input port p has received “no
value” ⊥ in the latest dispatch, the thread can use
the value in the cache, while the behavior annex
expression p’fresh becomes false:

class DataPort .
subclass DataPort < Port .

class DataInPort | cache : DataContent .
subclass DataInPort < InPort DataPort .

class DataOutPort .
subclass DataOutPort < OutPort DataPort .

Similarly, environment ports are represented as
instances of the EnvPort class. An environment
port keeps the identifier of the target controller.
The attribute envCache contains the data content
in the previous iteration to symbolically encode
the immediate communication (see Section 6.1):

class EnvPort | target : CompRef,
envCache : DataContent .

subclass EnvPort < Port .

class EnvInPort .
subclass EnvInPort < EnvPort InPort .

class EnvOutPort .
subclass EnvOutPort < EnvPort OutPort .

sort CompRef .
subsort ComponentId < CompRef .
op _._ : CompRef CompRef -> CompRef [ctor assoc] .

Connections are represented as terms of the
form pi --> po, with pi the source port name and
po the target port name. The name of a port p in a
subcomponent c is represented as a term c .. p.
A connection from c1’s output port p1 to c2’s input
port p2 is represented as c1 .. p1 --> c2 .. p2.
A level-up (resp., level-down) connection from c’s
port p to a port p′ of the “current” component is
written as c .. p --> p′ (resp., p′ --> c .. p):

sort Connection .
op _-->_ : FeatureRef FeatureRef

-> Connection [ctor] .

sort FeatureRef .
subsort FeatureId < FeatureRef .
op _.._ : CompRef FeatureId -> FeatureRef [ctor] .

We use slightly different representations for
connections between data subcomponents and
ports inside environments. A connection from a
data subcomponent d to an output port p (for

Springer Nature 2021 LATEX template

14 Formal Analysis of CPSs in AADL

sampling) is represented as a term d ==> p, and
a connection from an input port p to a data
subcomponent d (for updating data) is written
p =>> d:

sort EnvConnection .
subsort EnvConnection < Connection .
op _==>_ : ComponentId FeatureId

-> EnvConnection [ctor] .
op _=>>_ : FeatureId ComponentId

-> EnvConnection [ctor] .

For example, an instance of TwoThermostats
in Figure 3 is represented as the following object
(where some parts are replaced by ‘. . .’):

< TwoThermostatsInstance : System |
features : none,
subcomponents : < ctrl1 : System | ... >

< ctrl2 : System | ... >
< env1 : Env | ... >
< env2 : Env | ... >,

connections :
ctrl1 .. onctrl --> env1 .. onctrl ;
ctrl1 .. offctrl --> env1 .. offctrl ;
ctrl1 .. setpower --> env1 .. power ;
env1 .. temp --> ctrl1 .. curr ;
ctrl1 .. tou --> ctrl2 .. tin ;
ctrl2 .. onctrl --> env2 .. onctrl ;
ctrl2 .. offctrl --> env2 .. offctrl ;
ctrl2 .. setpower --> env2 .. power ;
env2 .. temp --> ctrl2 .. curr ;
ctrl2 .. tou --> ctrl1 .. tin,

properties :
TimingProperties::Period => 10 ;
HybridSynchAADL::Synchronous => true >

4.3 Constrained Objects

SMT expressions are declared as Maude terms
of sort Exp. They are constructed by constants,
variables, and the usual SMT operators:

sort Exp .
subsorts Value SMTVar < Exp .

sort BoolExp .
subsorts BoolValue SMTBoolVar < BoolExp < Exp .
op not_ : BoolExp -> BoolExp .
op _and_ : BoolExp BoolExp -> BoolExp [assoc comm] .
op _or_ : BoolExp BoolExp -> BoolExp [assoc comm] .
...

sort RealExp.
subsorts RealValue SMTRealVar < RealExp < Exp .
op -_ : RealExp -> RealExp .
op _+_ : RealExp RealExp -> RealExp [assoc comm] .
op _*_ : RealExp RealExp -> RealExp [assoc comm] .
...

sort UnitExp .
subsorts UnitValue < UnitExp < Exp .
op _===_ : UnitExp UnitExp -> BoolExp .
...

Constants include Boolean values, rational
numbers (of sort RealValue), and a unit value ∗
denoting the presence of an event:

sorts Value BoolValue RealValue UnitValue .
subsorts BoolValue RealValue UnitValue < Value .
op * : -> UnitValue [ctor] .

Variable terms, of sort SMTVar, include Boolean
variables of the form b(id), and real variables of
the form r(id), where id is a natural number:

sorts SMTVar SMTBoolVar SMTRealVar .
subsorts SMTBoolVar SMTRealVar < SMTVar .
op b : Nat -> SMTBoolVar [ctor] .
op r : Nat -> SMTRealVar [ctor] .

To symbolically represent a (possibly infinite)
set of objects, we use a constrained object of the
form φ(x1, . . . , xn) ‖ obj (x1, . . . , xn), where φ is
an SMT formula and obj is an object “pattern”
over SMT variables x1, . . . , xn. Object patterns
can be hierarchical, because subcomponents may
include object patterns. Likewise, a constrained
configuration is a term of the form φ ‖ conf , where
conf is a multiset of object patterns. A multiset
of constrained objects is equivalent to a con-
strained configuration where all object constraints
are conjuncted (see Section 5.1):

sort ConstObject .
subsort Object < ConstObject .
op _||_ : BoolExp Object -> ConstObject .

subsorts ConstObject Configuration < ConstConfig .
op _||_ : BoolExp Configuration -> ConstConfig .
op __ : ConstConfig ConstConfig -> ConstConfig .

We symbolically represent data contents using
SMT expressions. In HybridSynchAADL, a data
content for a port or a data component can be
either no value (i.e., some “don’t care” value ⊥)
or a (Boolean or real) value. A data content is
represented as a pair e # b of an SMT expression
e and a Boolean condition b. If b is false, then
the data content is ⊥; if b is true, then the data
content is a value represented by the expression e:

sort DataContent .
op _#_ : Exp BoolExp -> DataContent [ctor] .

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 15

4.4 An Example

The following shows a constrained object rep-
resenting an instance of the thread component
ThermostatThread in Figure 5, where avg has
a symbolic data content r(0) # b(0). This con-
strained object includes both cases where the
content of avg is present (b(0) = true) and ab-
sent (b(0) = false). If the content of avg is
present, its value r(0) must be greater than 0, by
the constraint not b(0) or r(0) > 0.

not b(0) or r(0) > 0 ||
< ctrlThread : Thread |
features :

< onctrl : DataOutPort |
content : * # false, property : none >

< offctrl : DataOutPort |
content : * # false, property : none >

< setpower : DataOutPort |
content : 0 # false, property : none >

< curr : DataInPort |
content : 0 # false, cache : 0 # false,
property : none >

< tin : DataInPort |
content : 0 # false, cache : 0 # false,
property : none >

< tou : DataOutPort |
content : 0 # true, property : none >,

subcomponents :
< avg : Data | value : r(0) # b(0), ... >,

connections : empty,
properties :

TimingProperties::Period => 10 ;
HybridSynchAADL::SamplingTime => 1.0 .. 5.0 ;
HybridSynchAADL::ResponseTime => 7.0 .. 9.0 ;
HybridSynchAADL::Synchronous => true,

variables : empty,
transitions :

init -[on dispatch]-> exec
{avg := (tin + curr) / 2 ; tou := curr} ;

exec -[avg > 25]-> init {offctrl !} ;
exec -[(avg < 20) and (avg > 10)]-> init
{setpower := 5 ; onctrl !} ;

exec -[avg <= 10]-> init
{setpower := 10 ; onctrl !} ;

exec -[otherwise]-> init {skip},
currState : init, completeStates : init >

The following shows a constrained object
for an instance of the environment component
RoomEnv in Figure 6; the ports include symbolic
variables, such as r(0), r(1), b(0), b(1), etc.
When the contents of output port temp and input
port power are present (b(2) and b(3)), the value
of temp is greater than 0 but less than the value
of power (r(1) > 0 and r(1) < r(0)). For input
ports offctrl and onctrl, the envCache can be

either present or absent, because b(0) and b(1)
are unconstrained.

not(b(2) and b(3)) or (r(1) > 0 and r(1) < r(0)) ||
< env1 : Env |

features :
< temp : EnvOutPort |

content : r(1) # b(3), target : ctrl1,
envCache : r(1) # b(3), property : none >

< offctrl : EnvInPort |
content : * # false, target : ctrl1,
envCache : * # b(0), property : none >

< onctrl : EnvInPort |
content : * # false, target : ctrl1,
envCache : * # b(1), property : none >

< power : EnvInPort |
content : r(0) # b(2), target : ctrl1,
envCache : 0 # false, property : none >,

subcomponents :
< p : Data | value : 5 # true, ... >
< x : Data | value : 15 # true, ... >,

connections : x ==> temp ; power =>> p,
properties :
Hybrid_SynchAADL::isEnvironment => true;
TimingProperties::Period => 10;
HybridSynchAADL::Synchronous => true,

currMode : toff,
jumps : ton -[offctrl]-> toff ;

toff -[onctrl]-> ton,
flows : ton [x(t)= x - (0.1 *(x - p / 0.1)* t)] ;

toff [x(t)= x * (1.0 - (0.1 * t))],
sampling : ctrl1 : (1,5),
response : ctrl1 : (7,9) >

5 Symbolic Semantics of
Discrete Controllers

This section presents the formal semantics for the
discrete subset of HybridSynchAADL.

Since the HybridSynchAADL modeling lan-
guage extends Synchronous AADL, the semantics
of discrete controllers extends that of Synchronous
AADL [32, 33], formalized in Maude using “con-
crete” rewriting with ground terms. In contrast,
our Maude-with-SMT semantics is formalized us-
ing symbolic rewriting with constrained terms.

5.1 Ensemble Behavior

Our semantics defines various semantic operations
on constrained terms to specify the behavior of
controllers, environments, communications, etc. In
particular, the semantic operation executeStep
defines a symbolic rewrite relation for a “big-step”
synchronous iteration of a single component obj :
i.e., executeStep(φ ‖ obj) ∗ φ′ ‖ obj ′.

Springer Nature 2021 LATEX template

16 Formal Analysis of CPSs in AADL

executeAction for ensembles

transferInputs

transfer input values
to subcomponents

propagateExec
apply execStep to
each subcomponent

transferResults
transfer the outputs of

subcomponents

execute all
subcomponents

Figure 7 The structure of execAction for ensembles.

op executeStep : ConstObject ˜> ConstObject .

Semantic operations, including executeStep,
are declared to be partial functions (arrow ˜>).
Since a term containing partial operations does
not have a sort, we can ensure that equations
and rules for semantic operations are only applied
to an object of sort Object in which all sub-
components have already finished their semantic
operations.

A (symbolic) synchronous step of the entire
system—a top-level system component with no
ports—is then formalized by the following rule:

vars OBJ OBJ’ : Object . vars C C’ : ComponentId .
vars COMPS COMPS’ : Configuration .
vars PHI PHI’ : BoolExp .

crl [step]: {PHI || < C : System | features : none >}
=> {PHI’ || OBJ}

if executeStep(PHI || < C : System | >)
=> PHI’ || OBJ .

A symbolic rewrite {φ ‖ obj} {φ′ ‖ obj ′}
therefore holds by the above rule if there is a sym-
bolic rewrite executeStep(φ ‖ obj) ∗ φ′ ‖ obj ′,
provided that obj has no ports.

Figure 7 visualizes the behavior of ensemble
components, such as systems and processes, which
is formalized using executeStep as follows:

crl executeStep(PHI || < C : Ensemble | >)
=> PHI’ || transferResults(OBJ’)
if OBJ := transferInputs(< C : Ensemble | >)
/\ propagateExec(PHI, OBJ) => PHI’ || OBJ’
/\ check-sat(PHI’) .

In this rule, each input port of the subcomponents
gets a value from its source by transferInputs.
Then, the operation executeStep is applied
to each subcomponent by propagateExec. Any
term of sort Object obtained by rewriting
propagateExec(PHI, OBJ) is nondeterministically
assigned to OBJ’ with a new constraint PHI’.
The function check-sat invokes an SMT solver

propagateExec
(
φ ‖ O1 O2

)

= O1 O2executeStep(φ ‖) executeStep(φ ‖)

Figure 8 The propagateExec function, where O1 and O2

indicate subcomponents, arrows indicate connections, and
bullets indicate values of input/output ports.

to check the satisfiability of the constraint PHI’.
Finally, the outputs of the subcomponents are
transferred by transferResults.

For a constrained ensemble object φ ‖ ensem,
propagateExec applies the operation executeStep
to each subcomponent obj of ensem constrained
by φ, as illustrated in Figure 8.

eq propagateExec(PHI,
< C : Ensemble | subcomponents : COMPS >)

= < C : Ensemble | subcomponents :
propExecAux(PHI, COMPS, none) > .

eq propExecAux(PHI,
< C : Component | > COMPS, COMPS’)

= propExecAux(PHI, COMPS, COMPS’
executeStep(PHI || < C : Component | >)) .

eq propExecAux(PHI, none, COMPS’) = COMPS’ .

Each term executeStep(φ ‖ obj) can then be
individually executed, and we use the following
equations to obtain a constrained configuration
where all resulting constraints are combined.

eq (PHI || COMPS) (PHI’ || COMPS’)
= (PHI and PHI’) || COMPS COMPS’ .
eq (PHI || COMPS) OBJ = PHI || (COMPS OBJ) .

5.1.1 Transferring Data

We model transferring data using two types of
messages: transIn messages, delivered to input
ports of subcomponents, and transOut messages,
delivered to output ports of an ensemble:

op transIn : DataContent FeatureRef -> Msg [ctor] .
op transOut : DataContent FeatureRef -> Msg [ctor] .

The following equations formalize the message
passing behavior of these messages:

vars PN PN’ : FeatureRef . vars P P’ : FeatureId .
vars D D’ : DataContent . vars B B’ B’’ : BoolExp .
var CONXS : Set{Connection} . vars E E’ : Exp .
vars PORTS PORTS’ : Configuration .

eq < C : Ensemble | features : PORTS transIn(D,PN),

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 17

transferInputs
(

O1 O2

)
= O1 O2

Figure 9 The transferInputs function.

subcomponents : COMPS >
= < C : Ensemble | features : PORTS,

subcomponents : transIn(D,PN) PORTS > .

eq transIn(D, C .. P)
< C : Component | features :

< P : InPort | content : D’ > PORTS >
= < C : Component | features :

< P : InPort | content : D > PORTS > .

eq < C : Ensemble | features : PORTS,
subcomponents : transOut(D,PN) COMPS >

= < C : Ensemble | features : PORTS transOut(D,PN),
subcomponents : COMPS > .

eq transOut(D, P) < P : OutPort | content : D’ >
= < P : OutPort | content : D > .

The function transferInputs moves data from
the input ports of an ensemble or the output
ports of its subcomponents into their connected
input ports of the subcomponents, as depicted
in Figure 9. This function generates transIn
messages using two functions transEnsIn and
transFBOut:

eq transferInputs(< C : Ensemble |
features : PORTS, connections : CONXS,
subcomponents : COMPS >)

= < C : Ensemble |
features : transEnsIn(CONXS, PORTS),
subcomponents : transFBOut(CONXS, COMPS) > .

For each input port P connected to an input
port of a subcomponent, transEnsIn creates a
transIn message with its current data content.
The function trInAux is defined to deal with “fan-
out” connections in which a single source port is
connected to several target ports:

eq transEnsIn((P --> C’ .. P’) ; CONXS,
< P : InPort | content : E # B > PORTS)

= trInAux(E # B, P, (P --> C’ .. P’) ; CONXS)
transEnsIn(remove(P, CONXS),
< P : InPort | content : E # false > PORTS) .

eq transEnsIn(CONXS, PORTS) = PORTS [owise] .

eq trInAux(D, PN, (PN --> C’ .. P’) ; CONXS)
= transIn(D, C’ .. P’) trInAux(D, PN, CONXS) .

eq trInAux(D, PN, CONXS) = none [owise] .

eq remove(PN, (PN --> PN’) ; CONXS)

transferResults
(

O1 O2

)
= O1 O2

Figure 10 The transferResults function.

= remove(PN, CONXS) .
eq remove(PN, CONXS) = CONXS [owise] .

For each output port P of a subcomponent con-
nected to an input port of another subcomponent,
transFBOut produces a transIn message:

eq transFBOut((C .. P --> C’ .. P’) ; CONXS,
< C : Component | features : < P : OutPort |

content : E # B > PORTS > COMPS)
= trInAux(E # B, C .. P, C .. P --> C’ .. P’ ; CONXS)

transFBOut(remove(C .. P, CONXS),
< C : Component | features : < P : OutPort |

content : E # false > PORTS > COMPS) .
eq transFBOut(CONXS, COMPS) = COMPS [owise] .

The function transferResults transfers data
from the output ports of the subcomponents to
their connected output ports of obj ; if such an
output port is also connected to another sub-
component, it keeps the data for the output in
the next step, as illustrated in Figure 10. As in
the transferInputs case, this function generates
transOut messages as follows:

eq transferResults(< C : Ensemble |
subcomponents : COMPS, connections : CONXS >)

= < C : Ensemble |
subcomponents : transEnsOut(CONXS, COMPS) > .

eq transEnsOut((C .. P --> P’) ; CONXS,
< C : Component | features : < P : OutPort |

content : D > PORTS > COMPS)
= trOutAux(D, C .. P, (C .. P --> P’) ; CONXS)

transEnsOut(remove(C .. P, CONXS), COMPS
< C : Component | features :

< P : OutPort | content :
fbdata(D, C .. P, CONXS) > PORTS >) .

eq transEnsOut(CONXS, COMPS) = COMPS [owise] .

eq trOutAux(D, C .. P, (C .. P --> P’) ; CONXS)
= transOut(D, P’) trOutAux(D, C .. P, CONXS) .

eq trOutAux(D, C .. P, CONXS) = none [owise] .

eq fbdata(E # B, C .. P, C .. P --> C’ .. P’ ; CONXS)
= E # B .

eq fbdata(E # B, C .. P, CONXS) = E # false [owise] .

5.2 Thread Behavior

Figure 11 visualizes the behavior of thread com-
ponents, which is defined by the following rule:

Springer Nature 2021 LATEX template

18 Formal Analysis of CPSs in AADL

executeAction for threads

readPort
read values

from input ports

readData
read values from
subcomponents

writePort
send values to
output ports

writeData
update values of
subcomponents

execTrans
execute the

transition system

guardConst
evaluate the guard

of a transition

execAction
execute the action

of a transition

eval
evaluate the value
of an expression

Figure 11 The structure of execAction for threads.

var LS : Set{Location} . vars L L’ : Location .
var VIS : Map{VarId,DataType} .
vars PRS PRS’ : PropertyAssociation .
vars TRS TRS’ : Set{Transition} .
vars FMAP FMAP’ : FeatureMap .
vars DATA DATA’ : DataValuation .

crl executeStep(
PHI || < C : Thread | features : PORTS,

subcomponents : COMPS, properties : PRS,
transitions : TRS, currState : L,
completeStates : LS, variables : VIS >)

=>
PHI’ || < C : Thread |

features : writePort(FMAP’,PORTS’),
subcomponents : writeData(DATA’,COMPS),
currState : L’ >

if {PORTS’,FMAP} := readPort(PORTS)
/\ DATA := readData(COMPS)
/\ execTrans(emptyVal(VIS), FMAP, DATA, PRS, TRS,

L, LS, PHI) => L’ | FMAP’ | DATA’ | PHI’ .

The function readPort returns a map from
each input port to its content; readData returns
a map from each data subcomponent to its value;
execTrans obtains a computation result of the
transition system; writePort updates the content
of each output port; and writeData updates the
value of each data subcomponent.

5.2.1 Port and Data Operations

Given a set of controller ports, readPort builds a
map from port identifiers to their data contents,
removes the content from each input port, and
returns the resulting ports and the feature map.
Since a Behavior Annex expression p’fresh re-
turns true if the content of input port p is “fresh”,
a feature map item for p is a pair d : f of content

d and freshness flag f , where d is also a pair e# b
with b indicating the presence of the content.

The following equations define the function
readPort. First, each output port P is related to
E # false (which indicates ⊥):

eq readPort(PORTS) = readPort(PORTS, none, empty) .
eq readPort(none, PORTS, FMAP) = {PORTS, FMAP} .

eq readPort(< P : DataOutPort |
content : E # B > PORTS, PORTS’, FMAP)

= readPort(PORTS, < P : DataOutPort | > PORTS’,
insert(P, E # false, FMAP)) .

Consider an input port P with content E # B
and cached content E’ # B’. If the content is
present (B is true), then P is related to the feature
map item (E # B) : true; otherwise, P is related
to (E’ # B’) : false using the cache value. This
can be written compactly using the conditional
operator ?. The content of P is set to absent, and
the cache attribute is updated with D:

ceq readPort(< P : DataInPort | content : E # B,
cache : E’ # B’ > PORTS, PORTS’, FMAP)

= readPort(PORTS, < P : DataInPort |
content : E # false, cache : D > PORTS’,

insert(P, D : B, FMAP))
if D := (B ? E : E’) # (B or B’) .

The function writePort replaces the content of
each output port by the content in the map FMAP:

eq writePort(FMAP, PORTS)
= writePort(FMAP, PORTS, none) .
eq writePort((P |-> D, FMAP), < P : DataOutPort |

content : D’ > PORTS, PORTS’)
= writePort(FMAP, PORTS, < P : DataOutPort |

content : D > PORTS’) .
eq writePort(FMAP, PORTS, PORTS’)
= PORTS PORTS’ [owise] .

For data components, the function readData
builds a map from each identifier to its value:

eq readData(COMPS) = readData(COMPS, empty) .
eq readData(< C : Data | value : D > COMPS, DATA)
= readData(COMPS, insert(C, D, DATA)) .
eq readData(none, DATA) = DATA .

Similarly, writeData updates the values of the
data subcomponents using a given map:

eq writeData(DATA, COMPS)
= writeData(DATA, COMPS, none) .
eq writeData((C |=> D’, DATA), < C : Data |

value : D > COMPS, COMPS’)
= writeData(DATA, COMPS, COMPS’

< C : Data | value : D’ >) .

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 19

eq writeData(DATA, COMPS, COMPS’)
= COMPS COMPS’ [owise] .

5.2.2 Executing Transitions

The following rule trans defines the behavior
of the operation execTrans. A transition from
the current state L is nondeterministically cho-
sen from the set TRS of transitions. The operation
execAction executes the actions ACT of the chosen
transition, provided that the guard condition GC
evaluates to true (the constraint B) and the new
constraint PHI’ is satisfiable. If the next state L’ is
a complete state (L’ in LS), the operation ends;
otherwise, execTrans is applied again:

vars VAL VAL’ : VarValuation . var GC : TransGuard .
var ACT : ActionBlock . vars EXP EXP’ : AADLExp .

crl [trans]: execTrans(VAL, FMAP, DATA, PRS,
TRS, L, LS, PHI)

=> if L’ in LS then
L’ | FMAP’ | DATA’ | PHI’

else execTrans(VAL, FMAP’, DATA’,
PRS, TRS, L’, LS, PHI’) fi

if (L -[GC]-> L’ ACT) ; TRS’ := TRS
/\ B := guardConst(GC,L,TRS’,VAL,FMAP,DATA,PRS)
/\ execAction(ACT, VAL, FMAP, DATA, PRS, PHI and B)

=> VAL’ | FMAP’ | DATA’ | PHI’
/\ check-sat(PHI’) .

The function guardConst is defined as follows.
An on dispatch guard always evaluates to true.
A constraint for a Boolean guard EXP is obtained
using the eval operation. An otherwise guard
evaluates to true if for all transitions from the
current state L (obtained by outTrs), their guard
conditions evaluate to false, where there is no
other otherwise guard (by noOwise):

eq guardConst(on dispatch, L, TRS, VAL, FMAP, DATA,
PRS) = true .

eq guardConst(EXP, L, TRS, VAL, FMAP, DATA, PRS)
= eval(EXP, VAL, FMAP, DATA, PRS) .

ceq guardConst(otherwise, L, TRS, VAL, FMAP, DATA,
PRS) = allGCfalse(TRS’, VAL, FMAP, DATA, PRS)
if TRS’ := outTrs(L, TRS) /\ noOwise(TRS’) .

eq allGCfalse((L -[EXP]-> L’ ACT) ; TRS, VAL, FMAP,
DATA, PRS) = not(eval(EXP, VAL, FMAP, DATA, PRS))
and allGCfalse(TRS, VAL, FMAP, DATA, PRS) .

eq allGCfalse(empty, VAL, FMAP, DATA, PRS) = true .

5.2.3 Evaluating Expressions

The function eval evaluates an AADL behavior
expression and returns the resulting data content,

given local variable values VAL, port values FMAP,
state variable values DATA, and property values
PRS. When eval returns a data content e # b, the
second item b indicates that every identifier in the
input expression has a value (i.e., not ⊥).

The case of AADL values V are defined by
the following equation, where the second item is
always true. We only consider Boolean values,
integers, and floating point numbers:

var VALUE : AADLValue . var VI : VarId .
var PR : PropertyId .

eq eval(VALUE, VAL, FMAP, DATA, PRS)
= VALUE # true .

The following equations define the cases for
identifiers: local variable VI, port identifier P, state
variable C, and property name PR:

eq eval(VI, VAL, FMAP, DATA, PRS) = VAL[VI] .
eq eval(P, VAL, FMAP, DATA, PRS) = data(FMAP[P]) .
eq eval(C, VAL, FMAP, DATA, PRS) = DATA[C] .
eq eval(PR, VAL, FMAP, DATA, PRS) = value(PRS[PR]) .

The following equation defines the case of a
fresh expression. As mentioned, a feature map
item has the form (e# b) : f , where b denotes
the presence of the content and f denotes the
freshness. Thus, eval returns f # b in this case:

ceq eval(fresh(P), VAL, FMAP, DATA, PRS)
= B # B’ if E # B’ : B := FMAP[P] .

The cases for the other expressions are defined
by propagating eval to the subexpressions. For
example, the semantics of an addition expression
is defined as follows (the second equation indicates
that the value of the entire expression is ⊥ if the
value of any subexpression is ⊥):

eq eval(EXP + EXP’, VAL, FMAP, DATA, PRS)
= eval(EXP, VAL, FMAP, DATA, PRS) +

eval(EXP’, VAL, FMAP, DATA, PRS) .

eq (E # B) + (E’ # B’) = (E + E’) # (B and B’) .

5.2.4 Executing Actions

The operation execAction computes a behavior
action, and returns a “behavior configuration” for
local variables, ports, and state variables. These
configurations contain symbolic expressions and
cumulative constraints, and represent (possibly
infinite) sets of concrete configurations.

Springer Nature 2021 LATEX template

20 Formal Analysis of CPSs in AADL

The following equations define the semantics
of an assignment action id := exp, assigning to id
the evaluated value of exp, where the presence of
exp is given as a constraint (PHI and B):

ceq execAction(VI := EXP, VAL, FMAP, DATA, PRS, PHI)
= insert(VI, E # true, VAL) | FMAP | DATA | PRS |
PHI and B

if E # B := eval(EXP, VAL, FMAP, DATA, PRS) .

ceq execAction(P := EXP, VAL, FMAP, DATA, PRS, PHI)
= VAL | insert(P, E # true, FMAP) | DATA | PRS |
PHI and B

if E # B := eval(EXP, VAL, FMAP, DATA, PRS) .

ceq execAction(C := EXP, VAL, FMAP, DATA, PRS, PHI)
= VAL | FMAP | insert(C, E # true, DATA) | PRS |
PHI and B

if E # B := eval(EXP, VAL, FMAP, DATA, PRS) .

For a conditional statement, given a “concrete”
configuration, the branch condition can evaluate
to either true or false. Thus, execAction produces
both cases with different constraints (e.g., EXP and
not(EXP) in the following equations):

vars AS AS’ : ActionSequence . var A : Action .

crl execAction(if (EXP) AS else AS’ end if, FMAP,
DATA, PRS, PHI) => execAction(AS, VAL, FMAP,
DATA, PRS, PHI and E and B)

if E # B := eval(EXP, VAL, FMAP, DATA, PRS) .

crl execAction(if (EXP) AS else AS’ end if, FMAP,
DATA, PRS, PHI) => execAction(AS’, VAL, FMAP,
DATA, PRS, PHI and E and B)

if E # B := eval(not(EXP), VAL, FMAP, DATA, PRS) .

Similarly, execAction produces both true and
false cases for the branch condition of a loop:

crl execAction(while (EXP) {AS}, VAL, FMAP, DATA,
PRS, PHI) => execAction({AS ; while (EXP) {AS}},
VAL, FMAP, DATA, PRS, PHI and E and B)
if E # B := eval(EXP, VAL, FMAP, DATA, PRS) .

crl execAction(while (EXP) {AS}, VAL, FMAP, DATA,
PRS, PHI) => VAL | FMAP | DATA | PRS | (PHI and
E and B)
if E # B := eval(not(EXP), VAL, FMAP, DATA, PRS) .

For a sequence of actions {Act1 ; · · · ; Actn},
each action in the sequence is executed based on
the execution results of the previous actions:

ceq execAction({A ; AS}, VAL, FMAP, DATA, PRS, PHI)
= execAction({AS}, VAL’, FMAP’, DATA’, PRS, PHI’)
if VAL’ | FMAP’ | DATA’ | PHI’ :=

execAction(A, VAL, FMAP, DATA, PRS, PHI) .

eq execAction({A}, VAL, FMAP, DATA, PRS, PHI)
= execAction(A, VAL, FMAP, DATA, PRS, PHI) .

6 Symbolic Semantics of
Continuous Environments

This section presents the semantics of continuous
environments in HybridSynchAADL. An environ-
ment component can continuously change its state
variables according to the continuous dynamics,
while discretely interacting with its controllers
according to the sampling and actuating times.
In our Maude-with-SMT semantics, nontrivial in-
teractions between environments and controllers
are specified using symbolic rewriting with con-
strained terms, where continuous dynamics—with
all possible sampling and actuating times based
on imprecise clocks—is encoded in SMT.

6.1 Environment Behavior

Figure 12 depicts the behavior of an environment
E that interacts with two controllers Cn, n = 1, 2,
in a single iteration. Let g : N → R≥0 denote the
global time g(i) at the beginning of the i-th period,
where g(i + 1) − g(i) = period . The time frame
is “shifted” to the left from the global time frame
[g(i), g(i+ 1)] by a maximal clock skew ε > 0.

1. The state variables of E have initial values ~v0,
and change continuously over time according
to E’s continuous dynamics;

2. The period of each controller Cn begins at
any time 0 < t0n < 2ε, because Cn runs
according to its local clock;

3. E sends the state values ~vsn at time tsn to
each controller Cn, where tsn − t0n denote the
sampling time declared by Cn; and

4. E receives Cn’s command αn at time tan (and
may change its continuous dynamics), where
tan − t0n denote the actuating time.

Unlike controller components, the behavior
of environment components cannot be directly
specified as synchronous composition. Indeed, the
environment behavior is asynchronous, because
different orders of “interaction events” can lead to
different behaviors (e.g., samplingC1

, samplingC2
,

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 21

E

C1

C2

~v1 α1

~v2 α2

g(i) g(i+ 1)

0 2ε period

samplingC1
samplingC2

α1

actuationC1

α2

actuationC2

t01 ts1 ta1t02 ts2 ta2

~v0
~vs1 ~vs2

~vt

Figure 12 Interactions between environment E and two controllers C1 and C2.

actuationC1
, and actuationC2

in Figure 12). More-
over, interactions between environments and con-
trollers are immediate, whereas synchronous com-
position requires that interactions between com-
ponents must be delayed. This implies that any
concrete semantics of HybridSynchAADL cannot
be easily defined as synchronous composition.

Previously, there were two approaches to deal
with asynchronous interactions in AADL. One
way is to explicitly enumerate all possible inter-
leavings of components [34], which quickly leads
to state space explosion. In Hybrid PALS [10], a
controller and an environment are combined into
an environment-restricted machine, where a con-
troller is given as a “flat” state machine. However,
this technique is not applicable to HybridSynch-
AADL, since a controller component may include
arbitrarily complex (hierarchical) subcomponents.

This paper presents an alternative approach
to symbolically encode asynchronous interactions
in a modular way. We encode the values of in-
put and output ports at different sampling and
actuating times as symbolic variables, and run
executeStep on each component independently,
without considering interleavings of components.
We then declare the correspondence between the
input and output ports using equality constraints.
This relies on the fact that an environment in-
teracts only once with each of its controllers in a
single iteration.

Figure 13 illustrates a modular encoding of
the interactions in Figure 12. A term o(~i p ~o)
represents an object instance with input ports
values ~i and output ports values ~o. We perform
executeStep on each component without inter-
leavings, where the input port values are replaced
by SMT variables. For the enclosing ensemble,
executeStep includes “connection” constraints
that declare equalities for the SMT variables in the
input ports and the symbolic values in the output
ports.

executeStep(true ‖ oC1
(x1 p ·)) ∗ ψC1

‖ o′C1
(· p α1)

executeStep(true ‖ oC2
(x2 p ·)) ∗ ψC2

‖ o′C2
(· p α2)

executeStep(true ‖ oE(y1, y2 p ·)) ∗ ψE ‖ o′E(· p v1, v2)

φ
′

= ψC1
∧ ψC2

∧ ψE

ψconn = (x1 = v1 ∧ x2 = v2 ∧ y1 = α1 ∧ y2 = α2)

check-sat(φ ∧ φ′ ∧ ψconn)

executeStep(φ ‖ < . . . | subcomponents : oC1
oC2

oE >)

 ∗

φ ∧ φ′ ∧ ψconn ‖ < . . . | subcomponents : o′C1
o′C2

o′E >

Figure 13 Modular encoding of asynchronous interac-
tions.

The semantics of environments is formalized
by rewrite rules using executeStep, which build
the constrained objects with SMT constraints
to encode the environment behavior shown in
Figure 12. All information for interaction with
controllers—including the values of input and out-
put ports at different sampling/actuating times—
is encoded as SMT variables. The immediate
communication between environments and con-
trollers is encoded as symbolic constraints. As a
result, the semantics of ensembles with environ-
ment subcomponents can be almost identical to
the one in Section 5.1.

The behavior of environment components is
defined by the following rule. We add the attribute
varGen to the class Env to maintain counters for
generating fresh SMT variables:

vars PRTS1 PRTS2 : Configuration .
vars STS RTS : Set{InterTiming} .
vars VG VG’ VG1 VG2 VG3 : VarGen .
vars JUMPS JUMPS’ : Set{EnvJump} .
vars FLOWS FLOWS’ : Set{EnvFlow} .
vars IPH OPH : BoolExp .

crl executeStep(
PHI || < C : Env | features : PORTS,

properties : PRS, subcomponents : COMPS
currMode : L, connections : CONXS,
jumps : JUMPS, flows : FLOWS,
sampling : STS, response : RTS,
varGen : VG >)

=>

Springer Nature 2021 LATEX template

22 Formal Analysis of CPSs in AADL

Iteration 1 2 3 . . .

Controller d1 d2 d3 . . .

Input port
content · d1 d2 . . .
envCache · x1 x2 . . .

readEnvPort
FMAP x1 x2 x3 . . .
constraint true x1 = d1 x2 = d2 . . .

Figure 14 The behavior of readEnvPort.

PHI’ and OPH || < C : Env | features : PRTS2,
currState : L’, varGen : VG3,
subcomponents : writeData(DATA’,COMPS) >

if {PRTS1,FMAP,IPH,VG1} := readEnvPort(PORTS,VG)
/\ DATA := readData(COMPS)
/\ execEnv(0, FMAP, DATA, PRS, L, JUMPS, FLOWS,

STS, RTS, CONXS, PORTS, PHI and IPH, VG1)
=> L’ | FMAP’ | DATA’ | PHI’ | VG2

/\ {PRTS2,OPH,VG3} := writeEnvPort(FMAP’,PRTS1,VG2)
/\ check-sat(PHI’ and OPH) .

The function readEnvPort returns a map from
each input port to its content, and writeEnvPort
updates the content of each output port; these
functions also return extra constraints to encode
the environment communication. The operation
execEnv builds symbolic constraints to encode the
behavior of the environment in one-step iteration.
The function readData returns a map from each
data subcomponent to its value, and writeData
updates the value of each data subcomponent.

6.2 Environment Port Operations

Given environment ports, readEnvPort removes
the contents ~d from the input ports, and builds a
map from port identifiers to fresh SMT variables
~xi denoting the contents sent by the controllers in
the same iteration. Since the current contents ~d are
sent by the controllers in the previous iteration,
readEnvPort builds equality constraints to relate
the current contents ~d and the “cached” SMT
variables ~xi−1 generated in the previous iteration.
In this way, we symbolically encode immediate
communication using delayed communication.

As described in Figure 14, we use the attribute
envCache to keep the symbolic content generated
in the previous round. Suppose that a controller
sends a data content di to an input port p in the
i-th iteration. Because of delayed communication,
the content of p is then di−1 in the i-th iteration.
As mentioned above, readEnvPort relates the port
identifier p to a fresh variable xi, and generates
the equality constraint xi−1 = di−1.

Iteration 0 1 2 . . .

Environment
FMAP d1 d2 . . .
envCache x0 x1 . . .

writeEnvPort
content x0 x1 x2 . . .
constraint x0 = d1 x1 = d2 . . .

Controller x0 x1 . . .

Figure 15 The behavior of writeEnvPort.

The following equations define the function
readEnvPort using an auxiliary function with an
extra argument to carry intermediate results:

eq readEnvPort(PORTS, VG)
= readEnvPort(PORTS, none, empty, true, VG) .
eq readEnvPort(none, PORTS, FMAP, PHI, VG)
= {PORTS, FMAP, PHI, VG} [owise] .

Each input port P is related to a symbolic con-
tent V # BV with fresh variables V and BV, and the
current content E # B and envCach E’ # B’ are
declared to be identical as a constraint:

var V : SMTVar . var BV : SMTBoolVar .

ceq readEnvPort(< P : EnvInPort | content : E # B,
envCache : E’ # B’ > PORTS, PORTS’,
FMAP, PHI, VG)

= readEnvPort(PORTS, PORTS’ < P : EnvInPort |
content : E # false, envCache : V # BV >,
insert(P, V # BV : true, FMAP),
PHI and E === E’ and B === B’, VG2)

if {V, VG1} := freshVar(VG, type(E))
/\ {BV,VG2} := freshVar(VG1,Boolean) .

Each output port P is related to E # false,
indicating ⊥ with the second item false:

eq readEnvPort(< P : EnvOutPort |
content : E # B > PORTS, PORTS’, FMAP, PHI, VG)

= readEnvPort(PORTS, PORTS’ < P : EnvOutPort | >,
insert(P, E # false, FMAP), PHI, VG) .

Likewise, the function writeEnvPort updates
the contents of the output ports with fresh SMT
variables, and builds equality constraints to relate
the current contents in the feature map FMAP and
the “cached” variables generated in the previous
iteration. Thus, the input ports of the controllers
receive the contents sent from the environment
in the same iteration. We use again envCache to
keep the symbolic content sent in the previous
round, to implement this behavior, as described in
Figure 15, where x0 denotes the initial content:

eq writeEnvPort(FMAP, PORTS, VG)
= writeEnvPort(PORTS, none, FMAP, true, VG) .

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 23

ceq writeEnvPort(< P : EnvOutPort | content : D,
envCache : E # B > PORTS, PORTS’,

FMAP, PHI, VG)
= writeEnvPort(PORTS, PORTS’ < P : EnvOutPort |

content : V # BV, envCache : V # BV >,
FMAP, PHI and E === E’ and B === B’, VG2)

if E’ # B’ := FMAP[P]
/\ {V, VG1} := freshVar(VG, type(E))
/\ {BV,VG2} := freshVar(VG1,Boolean) .

eq writeEnvPort(PORTS, PORTS’, FMAP, PHI, VG)
= {PORTS PORTS’, PHI, VG} [owise] .

The constraints for environment inputs in one
iteration are generated by readEnvPort in the next
iteration. Therefore, executeStep for ensembles is
slightly modified to include such constraints (by
the function finalConst) as follows:

crl executeStep(PHI || < C : Ensemble | >)
=> PHI’ || transferResults(OBJ’)
if OBJ := transferInputs(< C : Ensemble | >)
/\ propagateExec(PHI, OBJ) => PHI’ || OBJ’
/\ check-sat(PHI and PHI’ and finalConst(OBJ’)) .

The function finalConst simply collects the
environment input constraints by readEnvPort:

eq finalConst(< C : Env | features : PORTS,
varGen : VG > COMPS) = finalConst(COMPS)
and getConst(readEnvPort(PORTS,VG)) .

eq finalConst(< C : Ensemble | > COMPS)
= finalConSub(transferInputs(< C : Ensemble | >))

and finalConst(COMPS) .
eq finalConSub(< C : Component |

subcomponents : COMPS >) = finalConst(COMPS) .
eq finalConst(COMPS) = true [owise].

6.3 Executing Environments

We build the SMT constraints for the environ-
ment behavior, shown in Figure 12, using two
operations: execEnv for the continuous behavior,
and envStep for the discrete behavior. We de-
fine three rewrite rules to specify the semantics
of environments: env-cont for continuous state
changes, env-samp for sampling, and env-resp for
actuation.

6.3.1 Continuous Transitions

The following rule env-cont defines a “continuous
transition” from a state at time T to a state at time
T’, where T’ is as a fresh SMT variable and the
new environment state DATA’ by the continuous
dynamics is obtained using execFlow:

vars T T’ PER SK : RealExp . vars LT UT : Rat .
var PNS : Set{FeatureRef} . var CI : ComponentId .
var FLOW : FlowItem . var FUNCS : Set{AADLEnvFunc} .

crl [env-cont]: execEnv(T, FMAP, DATA, PRS, L,
JUMPS, FLOWS, STS, RTS, CONXS, PORTS, PHI, VG)

=>
envStep(T’, FMAP, DATA’, PRS, L, JUMPS, FLOWS,

STS, RTS, CONXS, PORTS, PHI’, VG’)
if {T’,VG’} := freshVar(VG,Real)
/\ flows((L [FLOW]) ; FLOWS’) := FLOWS
/\ DATA’ := execFlow(FLOW, T’ - T, FMAP, DATA, PRS)
/\ PHI’ := PHI and T <= T’ and B .

In HybridSynchAADL, continuous dynamics
is specified using either ODEs or continuous real
functions. For example, consider a continuous real
function C(VI) = EXP over an input argument VI:7

the function execFlow computes its value using
eval, where a given duration T is assigned to the
local variable identifier VI as follows:

ceq execFlow((C(VI) = EXP ; FUNCS),T,FMAP,DATA,PRS)
= execFlow(FUNCS, T, FMAP, insert(C,D,DATA), PRS)
if D := eval(EXP,(VI |-> T # true),FMAP,DATA,PRS) .

eq execFlow(empty, T, FMAP, DATA, PRS) = DATA .

After each continuous transition, the operation
envStep is applied to perform discrete operations,
such as sampling and responding. If no more such
discrete operation remains, the current iteration
of the environment ends with a result (using the
same function transResult for threads), with an
assertion to state that the end time T’ is the same
as the period TimingProperties::Period:

ceq envStep(T, FMAP, DATA, PRS, L, JUMPS, FLOWS,
empty, empty, CONXS, PORTS, PHI, VG)

= L | FMAP | DATA | PHI and B and T === PER | VG
if PER # B := eval(TimingProperties::Period,

FMAP, DATA, PRS) .

6.3.2 Environment Sampling

The following rule env-samp specifies the behavior
of sampling operations. A sampling time bound
(lt , ut) of a controller C is nondeterministically
chosen in the left-hand side of the rule:

crl [env-samp]:
envStep(T, FMAP, DATA, PRS, L, JUMPS, FLOWS,
(C :(LT,UT), STS), RTS, CONXS, PORTS, PHI, VG)

7There exist specialized solvers to support SMT solving with
ODEs [35]. Because they have not been integrated with Maude,
the current version only supports continuous functions.

Springer Nature 2021 LATEX template

24 Formal Analysis of CPSs in AADL

=>
execEnv(T, FMAP’, DATA, PRS, L, JUMPS, FLOWS,

STS, RTS, CONXS, PORTS, PHI and B, VG)
if B := timeConst(T, LT, UT, FMAP, DATA, PRS)
/\ FMAP’ := smpPort(C, FMAP, DATA, CONXS, PORTS) .

The function timeConst gives the constraint
for the sampling time T with respect to the clock
skew and the sampling time bound. As explained,
because the period of controller C happens at any
time between 0 and 2ε, the sampling happens
between lt and ut + 2ε as follows:

ceq timeConst(T, LT, UT, FMAP, DATA, PRS) =
real(LT) <= T and T <= real(UT) + 2 * SK and B if
SK # B := eval(HybridSynchAADL::MaxClockDeviation,

FMAP, DATA, PRS) .

The function smpPort updates the feature map
item for each output port P connected to C with
the corresponding state variable CI, provided that
P is connected to the controller C:

ceq smpPort(C, FMAP, DATA, CI ==> P ; CONXS, PORTS)
= smpPort(C, insert(P,DATA[CI],FMAP), DATA, CONXS,

PORTS) if validTarget(P, C, PORTS) .
eq smpPort(C, FMAP, DATA, CONXS, PORTS)
= FMAP [owise] .

eq validTarget(P, C, < P : EnvPort | target : C >
PORTS) = true .

eq validTarget(P, C, PORTS) = false [owise] .

6.3.3 Environment Actuation

The following rules env-resp specify the behavior
of actuation operations. In the first rule, there is a
mode transition from the current mode L, where a
trigger port P, connected with the controller C, has
received a content (isPortPresent). In the second
rule, all trigger input ports from L, connected with
C, have received no content (allTrigAbsent). The
actuating time T is constrained by the clock skew
and the actuating time bound (timeConst), and
all state variables “connected” to the controller C
are updated with the port values (actData):

crl [env-resp]:
envStep(T, FMAP, DATA, PRS, L, JUMPS, FLOWS,

STS, (C :(LT,UT), RTS), CONXS, PORTS, PHI, VG)
=>

execEnv(T, FMAP, DATA’, PRS, L’, JUMPS, FLOWS,
STS, RTS, CONXS, PORTS, PHI and B and B’, VG)

if L -[P, PNS]-> L’ ; JUMPS’ := JUMPS
/\ validTarget(P, C, PORTS)
/\ B := timeConst(T, LT, UT, FMAP, DATA, PRS)
/\ B’ := isPortPresent(P, FMAP)

/\ DATA’ := actData(C, FMAP, CONXS, PORTS, DATA) .

crl [env-resp]:
envStep(T, FMAP, DATA, PRS, L, JUMPS, FLOWS,

STS, (C :(LT,UT), RTS), CONXS, PORTS, PHI, VG)
=>

envStep(T, FMAP, DATA’, PRS, L, JUMPS, FLOWS,
STS, RTS, CONXS, PORTS, PHI and B and B’, VG)

if B := timeConst(T, LT, UT, FMAP, DATA, PRS)
/\ B’ := allTrigAbsent(L, C, JUMPS, FMAP, PORTS)
/\ DATA’ := actData(C, FMAP, CONXS, PORTS, DATA) .

The function isPortPresent returns a con-
straint that a given input port P has received a
value. The function allTrigAbsent returns a con-
straint that all trigger input ports of each mode
transition from a given mode L are not present if
they are connected to a given controller C:

ceq isPortPresent(P, FMAP) = B and B’
if E # B : B’ := FMAP[P] .

eq allTrigAbsent(L, C, (L -[PNS]-> L’) ; JUMPS,
FMAP, PORTS) = allTrigAbsent(L, C, JUMPS, FMAP,
PORTS) and allTrigAbsent(PNS, C, FMAP, PORTS) .

eq allTrigAbsent(L, C, JUMPS, FMAP, PORTS)
= true [owise] .

ceq allTrigAbsent((P, PNS), C, FMAP, PORTS)
= not isPortPresent(P,FMAP) and allTrigAbsent(PNS,

C, FMAP, PORTS) if validTarget(P, C, PORTS) .
eq allTrigAbsent(PNS, C, FMAP, PORTS)
= true [owise] .

The function actData updates the content of
each state variable CI by the content of an input
port P with a connection P =>> CI, provided P has
received a value from a given controller C. If P is
not present, CI is not updated; this is encoded
using the conditional operator _?_:_:

ceq actData(C, FMAP, P =>> CI ; CONXS, PORTS, DATA)
= actData(C, FMAP, CONXS, PORTS,

insert(CI, (B ? E : E’) # (B or B’), DATA))
if validTarget(P, C, PORTS)
/\ E # B : B’’ := FMAP[P] /\ E’ # B’ := DATA[CI] .

eq actData(C, FMAP, CONXS, PORTS, DATA)
= DATA [owise] .

7 Formal Analysis using the
HybridSynchAADL Tool

To support the convenient modeling and formal
analysis of HybridSynchAADL models within the
OSATE tool environment, we have developed the
HybridSynchAADL OSATE plugin that:

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 25

1. provides an intuitive language to specify
properties/requirements of models,

2. automatically generates a Maude-with-SMT
model from a HybridSynchAADL model, and

3. performs various formal analyses using
Maude with SMT solving as a back-end.

Our tool implements a state merging technique,
adapted from [15], to significantly improve anal-
ysis performance, and is available at https://
hybridsynchaadl.github.io.

Section 7.1 presents our tool’s property spec-
ification language and its Maude semantics; i.e.,
how properties are analyzed in Maude with SMT.
Section 7.2 explains our state merging techniques
for optimizing the performance of such Maude-
with-SMT analysis. Section 7.3 introduces the tool
and its user interface. Finally, Section 7.4 ex-
plains our approaches for gaining confidence in the
correctness of the tool implementation.

7.1 Specifying Properties

Our tool’s property specification language allows
the user to easily specify invariant and reachability
properties—without having to understand Maude
or SMT—as propositional formulas whose atomic
propositions are AADL Boolean expressions. Since
HybridSynchAADL models typically are infinite-
state systems, we only consider properties over
behaviors up to a given time bound.

Atomic propositions are Boolean expressions
in the AADL Behavior Annex syntax. A named
proposition can be declared in HybridSynchAADL
as follows, where each identifier is fully qualified
with its component path in the AADL syntax:8

proposition [id]: AADL Boolean Expression

Such user-defined propositions can appear in
propositional logic formulas, with the prefix ‘?’, in
invariant and reachability properties

We can simplify component paths that appear
repeatedly using component scopes. A scoped ex-
pression of the form path | exp denotes that each
component path of each identifier in exp begins
with path. For example, c1 . c2 | (x1 > x2) is
equivalent to (c1 . c2 .x1 > c1 . c2 .x2).

The following named invariant property holds
if for every state satisfying the initial condition

8A component path is given by a period-separated path of
component identifiers in AADL; for example, c1 . c2 . b.

ϕinit , all states reachable within the time bound
τbound satisfy the property ϕinv .

invariant [name]: ϕinit ==> ϕinv in time τbound

A named reachability property (the dual of
an invariant) holds if a state satisfying ϕgoal is
reachable from some state satisfying the initial
condition ϕinit within the time bound τbound .

reachability [name]: ϕinit ==> ϕgoal in time τbound

7.1.1 Semantics

The formal semantics of the property specification
language is defined in Maude. Given a Boolean
expression COND and a top-level component OBJ, its
value, written JCONDK OBJ, is true if it evaluates to
a data content b # b′, and both b and b′ are true.
The following equation defines JCONDK OBJ, where
nil denotes the empty path:

ceq [[COND]] OBJ = B and B’
if B # B’ := evalPS(normal(nil, COND), OBJ) .

Given a scoped expression, normal returns a
normalized expression without component scopes.
This function is defined inductively as follows,
where VAR denotes a variable identifier, and PH and
PH’ denote component paths:

eq normal(PH, VALUE) = VALUE .
eq normal(PH, VAR) = PH . VAR .
eq normal(PH, PH’ | EXP) = normal(PH . PH’, EXP) .
eq normal(PH, EXP and EXP’)
= normal(PH, EXP) and normal(PH, EXP’) .

eq normal(PH, EXP or EXP’)
= normal(PH, EXP) or normal(PH, EXP’) .

...

Given a set of components, the function evalPS
computes the content e # b of a normalized
expression using the function eval (defined in
Section 5.2.3) as follows, where AtomicComponent
is a superclass of the “atomic” classes Thread and
Env:

eq evalPS(VALUE, COMPS) = VALUE .
eq evalPS(C . PH . VAR, COMPS < C : Ensemble |

subcomponents : COMPS’ >)
= evalPS(PH . VAR, COMPS’) .

eq evalPS(C . VAR, COMPS < C : AtomicComponent |
subcomponents : DATA, properties : PRS >)

= eval(VAR, none, DATA, PRS) .
eq evalPS(EXP and EXP’, COMPS)
= evalPS(EXP, COMPS) and evalPS(EXP’, COMPS) .

eq evalPS(EXP or EXP’, COMPS)

https://hybridsynchaadl.github.io
https://hybridsynchaadl.github.io

Springer Nature 2021 LATEX template

26 Formal Analysis of CPSs in AADL

= evalPS(EXP, COMPS) or evalPS(EXP’, COMPS) .
...

A reachability property ϕinit ==> ϕgoal in
time τbound then corresponds to the following
Maude search command to find its witness, where
N is the quotient of τbound by the period of the
model and initState is the term representation
of the entire model:

search [1,N]
{([[ϕinit]] initState) || initState}

=>* {PHI || OBJ}
such that

check-sat(PHI and
finalConst(OBJ) and ([[ϕgoal]] OBJ)) .

Similarly, an invariant property of the form
ϕinit ==> ϕinv in time τbound corresponds to
the following Maude search command to find its
counterexample (i.e., the property holds if the
search command cannot find a solution):

search [1,N]
{([[ϕinit]] initState) || initState}

=>* {PHI || OBJ}
such that

check-sat(PHI and
finalConst(OBJ) and not([[ϕinv]] OBJ)) .

7.1.2 Example

Consider the thermostat system in Section 3 with
two thermostat controllers ctrl1 and ctrl2 and
their environments env1 and env2. The following
declares two propositions inRan1 and inRan2. For
example, inRan1 holds if the state variable x of the
environment env1 is between 10 and 25.

proposition [inRan1]: env1 | (x > 10 and x <= 25)
proposition [inRan2]: env2 | (x > 5 and x <= 10)

The following declares the invariant property
inv, which holds iff for each initial state satisfying
|env1.x− 15| < 3 and |env2.x− 7| < 1, any state
reachable within time bound 30 satisfies inRan1,
inRan2, and env1.x > env2.x.

invariant [inv]:
abs(env1 . x - 15) < 3 and abs(env2 . x - 7) < 1
==> ?inRan1 and ?inRan2 and (env1 . x > env2 . x)

in time 30

The property inv corresponds to the following
Maude search command. The constant initState
is replaced by the term representation of the entire

model, and inRan1 and inRan2 are replaced by the
related Boolean expressions.9

search [1,3] {([[abs(env1 . x - 15) < 3 and
abs(env2 . x - 7) < 1]] initState) || initState}

=>* {PHI || OBJ}
such that

check-sat(PHI and finalConst(OBJ) and
not [[inRan1 and inRan2

and env1 . x > env2 . x]] OBJ) .

7.2 Merging Symbolic States

Nontrivial control programs with many branches
and guarded transitions typically involve a large
number of symbolic states. Furthermore, for an
environment interacting with n controllers, there
are O((2n)!/2n) symbolic execution results due to
different orders of sampling and actuating events.
Thus, executeStep can generate many different
execution results for one environment component.

We symbolically reduce the number of differ-
ent execution results by merging two terms that
are syntactically identical except for SMT sub-
terms into one constrained term. Consider a term
t(u1, . . . , un) with SMT subterms u1, . . . , un. Let
x1, . . . , xn be fresh SMT variables that do not
appear in the term t. An abstraction of built-ins
for t, denoted by abs(t), is a constrained term
(x1 = u1 ∧ · · · ∧ xn = un) ‖ t(x1, . . . , xn), which is
semantically equivalent to the original term t (i.e.,
Jabs(t)K = Jtrue ‖ tK) [14].

Abstractions of built-ins φ1 ‖ t1 and φ2 ‖ t2 are
mergeable iff t1 = ρt2 for a renaming substitution
ρ (i.e., t1 and t2 are equivalent up to renaming).
The merged term is then the constrained term

(φ1 ∨ ρφ2) ‖ t1.

E.g., y > x ‖ f(y) and z = 3 ‖ f(z) can be merged
into (y > x ∨ y = 3) ‖ f(y). The following lemma
ensures the correctness of our method.

Lemma 1 J(φ1 ∨ ρφ2) ‖ t1K = Jφ1 ‖ t1K ∪ Jφ2 ‖ t2K.

Proof By definition (Section 2.3), u ∈ J(φ1∨ρφ2) ‖ t1K
iff there is a substitution θ such that u = θt1 and
T |= θ(φ1 ∨ ρφ2). Since t1 = ρt2, u = θρt2 and either
T |= θφ1 or T |= θρφ2 holds. That is, one of the

9Since the period of the system is 10 (ms), we search for
states reachable within 30/10 = 3 iterations/steps of the
system.

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 27

following must hold: (i) u = θt1 and T |= θφ1, or
(ii) u = θρt2 and T |= θρφ2. By definition, we have
u ∈ Jφ1 ‖ t1K or u ∈ Jρ(φ2 ‖ t2)K. Since ρ is a renaming
substitution, u ∈ Jρ(φ2 ‖ t2)K iff u ∈ Jφ2 ‖ t2K. As a
result, J(φ1 ∨ ρφ2) ‖ t1K = Jφ1 ‖ t1K ∪ Jφ2 ‖ t2K. �

Algorithm 1 executeStep with State Merging
Input: A constrained object φ ‖ obj
Output: A set of constrained objects

1 S ← {(φ′ ‖ obj ′) | executeStep(φ ‖ obj) ∗ φ′ ‖ obj ′}
2 Ŝ ← {(φ′ ∧ ψ ‖ t) | (φ′ ‖ obj ′) ∈ S, (ψ ‖ t) = abs(obj ′)}
3 while ∃(ϕ1 ‖ t1), (ϕ2 ‖ t2) ∈ Ŝ. mergeable(t1, t2) do
4 ϕ ‖u← a merged term of ϕ1 ‖ t1 and ϕ2 ‖ t2
5 Ŝ ← (Ŝ ∪ {ϕ ‖u}) \ {ϕ1 ‖ t1, ϕ2 ‖ t2}
6 return Ŝ

Algorithm 1 summarizes the new “merging”
operation. It collects all the execution results by
executeStep and merges all mergeable results.
Algorithm 1 always generates a single “merged”
result, since any constrained objects obtained by
executeStep from the same object are mergeable
in our HybridSynchAADL semantics. Hence, the
step rule for the entire system will yield a single
symbolic state for one synchronous step.

More precisely, we define a function symAbs to
obtain abstractions of built-ins. For two terms t1
and t2, symAbs returns a triple (u, φ1, φ2), where
φ1 ‖ u and φ2 ‖ u are, abstractions of t1 and t2,
respectively, with the same SMT variables. E.g.,
symAbs for two SMT expressions e1 and e2 is a
triple (x, x = e1, x = e2) with a fresh variable x
(VG is a counter for generating fresh variables):

ceq symAbs(E1, E2, VG)
= {X, X === E1, X === E2, VG’}
if {X,VG’} := freshVar(VG,type(E1))
/\ type(E1) == type(E2) .

We define symAbs for each “pattern” of terms,
such as data contents and data valuations, that
can appear in the execution results of execTrans
and execEnv. To illustrate, consider data contents
of the form e # b in our semantics. Using symAbs
for SMT expressions described above, symAbs for
data contents is defined as follows:

ceq symAbs(E # B, E’ # B’, VG)
= {ME # MB, CS1 and CS2, CS1’ and CS2’, VG2}
if {ME, CS1, CS1’, VG1} := symAbs(E, E’, VG)
/\ {MB, CS2, CS2’, VG2} := symAbs(B, B’, VG1) .

The HybridSynchAADL Tool
HybridSynchAADL

Model

Requirement

OSATE Result View

Code
Generation

Constraint
Checking Rewriting

Logic
Model

Formal Analysis
Symbolic Reachability

Randomized Simulation

Figure 16 Architecture of the HybridSynchAADL tool.

The function symMerge syntactically merges
those terms into a single constrained term using
symAbs for each pattern, where max returns the
maximum of two fresh variable counters. We do
not need to perform extra renaming, because the
same set of fresh variables are used for symAbs:

ceq symMerge(L | FMAP | DATA | PHI | VG,
L’ | FMAP’ | DATA’ | PHI’ | VG’)

= ML | MFMAP | MDATA | MPHI | VG3
if VG0 := max(VG,VG’)
/\ {ML,PHI1,PHI1’,VG1} := symAbs(L,L’,VG0)
/\ {MFMAP,PHI2,PHI2’,VG2} := symAbs(FMAP,FMAP’,VG1)
/\ {MDATA,PHI3,PHI3’,VG3} := symAbs(DATA,DATA’,VG2)
/\ MPHI := (PHI and PHI1 and PHI2 and PHI3) or

(PHI’ and PHI1’ and PHI2’ and PHI3’) .

Our technique can be considered an instance
of a symbolic state-space reduction approach [15]
that merges symbolic states using disjunction and
generalization. Algorithm 1 is adapted from [15] to
deal with arbitrary constrained objects in Hybrid-
SynchAADL. As shown in Section 9.3, this state
merging dramatically improves the performance of
symbolic analysis and makes the formal analysis
feasible for such distributed hybrid systems.

7.3 The HybridSynchAADL Tool

Figure 16 shows the architecture of the Hybrid-
SynchAADL tool. The tool first statically checks
whether a given model satisfies the syntactic con-
straints of HybridSynchAADL. It uses OSATE’s
code generation facilities to synthesize a Maude-
with-SMT model from the HybridSynchAADL
model. It invokes Maude and an SMT solver to
check whether the model satisfies given invariant
and reachability requirements. Our tool is imple-
mented in around 6, 200 lines of Maude code and
around 8, 600 lines of Java and Xtend code.

Syntactic validation of a HybridSynchAADL
model ensures that the Maude-with-SMT model
is symbolically executable. E.g., an environment
component must declare the component property
Hybrid_SynchAADL::ContinuousDynamics over its

Springer Nature 2021 LATEX template

28 Formal Analysis of CPSs in AADL

data subcomponents of type Base_Types::Float.
The tool checks other “trivial” constraints that are
assumed in the formal semantics; e.g., all input
ports are connected to some output ports.

HybridSynchAADL provides two formal anal-
ysis methods. Symbolic reachability analysis can
verify that all possible behaviors satisfy a given
requirement; if not, a counterexample is gener-
ated. Randomized simulation repeatedly executes
the model until a counterexample is found, by
randomly choosing concrete sampling and actu-
ating times, nondeterministic transitions, etc. A
counterexample (or witness) shows the data sub-
component values of all AADL components in the
system in each synchronous step.

Our tool also provides portfolio analysis that
combines symbolic reachability analysis and ran-
domized simulation. Symbolic reachability analy-
sis can guarantee the absence of a counterexample,
and can find subtle counterexamples, whereas
randomized simulation is effective for finding “ob-
vious” bugs. The tool runs both analysis methods
in parallel using multithreading, and displays the
result of the analysis that terminates first.

Figure 17 shows the interface of our tool that is
fully integrated into OSATE. The left editor shows
the code of FourDronesSystem in Section 8 below,
the bottom right editor shows its graphical repre-
sentation, and the top right editor shows two prop-
erties in the property specification language. The
HybridSynchAADL menu contains three items
for constraint checking, code generation, and for-
mal analysis. The Portfolio Analysis item has
been clicked, and the Result view at the bottom
displays the results in a readable format.

7.4 Testing the Implementation

We have not undertaken a formal proof that
our implementation is correct. Instead, we have
thoroughly tested the formal semantics and the
generated models. Since our Maude-with-SMT se-
mantics is executable, it is straightforward to write
test cases and check that the results are as ex-
pected. We have developed a test suite for unit
testing of the equations and rules in the formal se-
mantics, and a test suite for system testing of the
code generation and state merging.

Our test suite includes 850 test cases for unit
testing and 98 test cases for system testing. There
are 782 equations and rewrite rules in our formal

semantics, including state merging, and we have
achieved 100% rule/equation coverage. To cover
various language features of HybridSynchAADL,
we use more than 10 models, including those in
Section 9, for system testing. Our test suite also
includes differential tests to check whether state
merging gives the same result.

Finally, our confidence in our implementation
is also strengthened by the fact that the results of
analyzing the tool-generated HybridSynchAADL
models are consistent with the analysis performed
using other formal tools on corresponding “hand-
coded” models in Section 9.

8 Case Study: Collaborating
Autonomous Drones

This section shows how virtually synchronous
CPSs for controlling distributed drones can be
modeled and analyzed using HybridSynchAADL.
Controllers of multiple drones collaborate to
achieve common maneuver goals, such as ren-
dezvous or formation control. The controllers are
physically distributed, because each controller is
included in the drone hardware. Our models take
into account network delays, asynchronous com-
munication, continuous dynamics, clock skews,
execution times, sampling and actuating times,
etc.—for some of these features indirectly, via the
Hybrid PALS equivalence.

8.1 Distributed Consensus of Drones

We use distributed consensus algorithms [36] to
synchronize the drone movements. Each drone has
an information state that represents the drone’s
local view of the coordination task, such as the
rendezvous position, the center of a formation,
etc. There is no centralized controller with a
“global” view. Each drone periodically exchanges
the information state with neighboring drones,
and eventually the information states of all drones
should converge to a common value.

Consider N drones with double-integrator dy-
namics, where ~xi, ~vi, and ~ai denote the position,
velocity and, acceleration of the i-th drone, 1 ≤
i ≤ N , respectively. The continuous dynamics of
the i-th drone is then specified by the differen-
tial equations ~̇xi = ~vi and ~̇vi = ~ai. Let A denote
the adjacency matrix representing the underlying

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 29

Figure 17 Interface of the HybridSynchAADL tool.

communication network. If Aij is 0, then the i-
th drone cannot receive information from the j-th
drone. The controller samples the drone’s state,
and gives the new acceleration to the environment
as a control command.

The goal of rendezvous is for all distributed
drones to arrive at a common location at the same
time (without crashing into each other). Accord-
ing to the distributed consensus algorithm [36],
the acceleration ~ai of the i-th drone is given by:

~ai = −∑N
j=1Aij

(
(~xi − ~xj) + γ(~vi − ~vj)

)
,

where γ > 0 is a coupling strength parameter for
velocities. In each iteration, the information state
~xi of the i-th drone is directed toward the infor-
mation states of its neighbors in A, and eventually
converges to a consensus value.

In formation control, one drone is designated
as a “leader” and the other drones follow the
leader in a given formation. The information state
is the position of the leader that is continuously
changing. Suppose that the N -th drone is the
leader. The acceleration ~ai of the i-th drone, 1 ≤
i < N , is given by the following equation [36]:

~ai = ~aN − α
(
~ei − ~xN + γ(~vi − ~vN)

)
−

∑N−1
j=1 Aij

(
~ei − ~ej + γ(~vi − ~vj)

)
,

where ~ei = ~xi − ~oi with ~oi a formation offset, and
α and γ are positive constants. The position ~xi of
the i-th drone eventually converges to ~xN − ~oi.

In both cases, assuming that acceleration is
negligible, we also consider a a simplified model
for drones with single-integrator dynamics. The

acceleration is then 0, and a controller gives a ve-
locity as an actuation command. For rendezvous
and formation control, the velocity ~vi is given by
the following equations, respectively [36]:

~vi = −∑N
j=1Aij(~xi − ~xj),

~vi = ~vN − α(~ei − ~xN)−∑N−1
j=1 Aij(~ei − ~ej).

This model provides a reasonable approximation
when the velocity is low and is often much easier
to analyze using SMT solving.

8.2 The HybridSynchAADL Model

Figure 18 illustrates a rendezvous model of four
drones with single-integrator dynamics.10 Each
drone is connected to two other drones. A drone
component consists of an environment and its
controller: an environment defines the physical
model of the drone, such as position and velocity,
and a controller interacts with the environment
according to the sampling and actuating times.

In each round, a controller determines a new
velocity. The controller obtains the position ~x from
its environment at its sampling time. The position
of the connected drone was sent in the previous
round. The environment of the drone changes its
position according to the velocity ~v indicated by
its controller, where the new velocity ~v becomes
effective at its actuation time.

Figures 19–24 define the drone system in
HybridSynchAADL when the drones move in a

10We have developed a variety of HybridSynchAADL models
for rendezvous and formation control of different numbers of
drones with single-integrator and double-integrator dynamics.
All of them are available at https://hybridsynchaadl.github.io.

https://hybridsynchaadl.github.io

Springer Nature 2021 LATEX template

30 Formal Analysis of CPSs in AADL

FourDrones

Drone1 Drone2

Drone3Drone4

Drone

Environment

Controller

~x

<latexit sha1_base64="1BXJDaX2rm10Ymz/ZPwn4wBW4M0=">AAACNXicbZDNSsNAFIUn9a/Wv1Y3gptgEVxISaSiy6IblxXsD7ShTCbTdugkE2ZuSkPoQ7jVB/FZXLgTt76CkzQLbXtg4HC+e+HOcUPOFFjWh1HY2Nza3inulvb2Dw6PypXjthKRJLRFBBey62JFOQtoCxhw2g0lxb7LacedPKS8M6VSMRE8QxxSx8ejgA0ZwaCjTn9KSTKbD8pVq2ZlMleNnZsqytUcVIzTvidI5NMACMdK9WwrBCfBEhjhdF7qR4qGmEzwiPa0DbBP1ZU3ZaHKrJPMstvn5oWmnjkUUr8AzCz9u51gX6nYd/Wkj2GsllkarmUKfCxj6a2FaQJCcLWO9iIY3jkJC8IIaEAWNw4jboIw0w5Nj0lKgMfaYCKZ/rJJxlhiArpp3aW93NyqaV/X7Hrt5qlebdznrRbRGTpHl8hGt6iBHlETtRBBE/SCXtGb8W58Gl/G92K0YOQ7J+ifjJ9falSsVA==</latexit>

~v

<latexit sha1_base64="0RddcuPTuhF0h1sSzcDvX70cOsQ=">AAACNXicbZDNSsNAFIUn/tb61+pGcBMsggspiVR0WXTjsoL9gTaUyWTSDp1kwsxNsIQ+hFt9EJ/FhTtx6ys4SbPQtgcGDue7F+4cN+JMgWV9GGvrG5tb26Wd8u7e/sFhpXrUUSKWhLaJ4EL2XKwoZyFtAwNOe5GkOHA57bqT+4x3EyoVE+ETTCPqBHgUMp8RDDrqDhJK0mQ2rNSsupXLXDZ2YWqoUGtYNU4GniBxQEMgHCvVt60InBRLYITTWXkQKxphMsEj2tc2xAFVl17CIpVbJ33Ob5+Z55p6pi+kfiGYefp3O8WBUtPA1ZMBhrFaZFm4kikIsJxKbyXMEhCCq1W0H4N/66QsjGKgIZnf6MfcBGFmHZoek5QAn2qDiWT6yyYZY4kJ6KZ1l/Zic8umc1W3G/Xrx0ateVe0WkKn6AxdIBvdoCZ6QC3URgRN0At6RW/Gu/FpfBnf89E1o9g5Rv9k/PwCZrysUg==</latexit>

out

in

Figure 18 The AADL architecture of four drones (left),
and a drone component (right), where arrows with double
bars denote delayed connections.

system FourDronesSystem
end FourDronesSystem;

system implementation FourDronesSystem.impl
subcomponents
dr1: system Drone::Drone.impl;
dr2: system Drone::Drone.impl;
dr3: system Drone::Drone.impl;
dr4: system Drone::Drone.impl;

connections
C1: port dr1.oX -> dr2.iX;
C2: port dr1.oY -> dr2.iY;
C3: port dr2.oX -> dr3.iX;
C4: port dr2.oY -> dr3.iY;
C5: port dr3.oX -> dr4.iX;
C6: port dr3.oY -> dr4.iY;
C7: port dr4.oX -> dr1.iX;
C8: port dr4.oY -> dr1.iY;

properties
Hybrid_SynchAADL::Synchronous => true;
Period => 100ms;
Hybrid_SynchAADL::Max_Clock_Deviation => 10ms;
Timing => Delayed applies to
C1, C2, C3, C4, C5, C6, C7, C8;

Data_Model::Initial_Value => ("0.0") applies to
dr1.oX, dr2.oX, dr3.oX, dr4.oX,
dr1.oY, dr2.oY, dr3.oY, dr4.oY;

end FourDronesSystem.impl;

Figure 19 A top-level system component.

two-dimensional space and use single-integrator
dynamics.

The top-level system component is declared
to be synchronous with period 100 ms, and in-
cludes four Drone subcomponents (Figure 19).
Each drone sends its position through its output
ports oX and oY, and receives the position of the
other drone through its input ports iX and iY. The
connections between drone components are de-
layed, the initial values of the source output ports
are 0.0, and the maximal clock skew is defined to
be 10 ms.

A drone component has two input ports iX and
iY and two output ports oX and oY (Figure 20). Its

system Drone
features

iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;

end Drone;

system implementation Drone.impl
subcomponents

ctrl: system DroneControl::DroneControl.impl;
env: system Environment::Environment.impl;

connections
C1: port ctrl.oX -> oX;
C2: port ctrl.oY -> oY;
C3: port iX -> ctrl.iX;
C4: port iY -> ctrl.iY;
C5: port env.cX -> ctrl.cX;
C6: port env.cY -> ctrl.cY;
C7: port ctrl.vX -> env.vX;
C8: port ctrl.vY -> env.vY;

properties
Hybrid_SynchAADL::Sampling_Time => 30ms .. 33ms;
Hybrid_SynchAADL::Response_Time => 60ms .. 63ms;

end Drone.impl;

Figure 20 A drone component.

implementation contains a controller ctrl and an
environment env. The controller ctrl receives the
current position from the environment env via the
input ports cX and cY, and sends a new velocity to
env via the output ports vX and vY, according to
its sampling and actuating times. The controller
ctrl also communicates with outside components
using Drone’s input and output ports.

A controller system component has four ports
iX, iY, oX, and oY for communicating with other
controllers, and four ports cX, cY, vX, and vY
for interacting with the environment (Figure 21).
Its implementation includes the process compo-
nent ctrlProc, which again includes the thread
component cThread, as shown in Figure 22. The
input and output ports of a wrapper component
(e.g., ctrlProc) are connected to the ports of the
enclosed subcomponent (e.g., cThread).

Figure 23 shows a thread component for a
drone controller. When the thread dispatches, the
transition from state init to exec is taken. If the
distance to the connected drone is too close, then
the new velocity is set to 0, and the cls flag is set
to true. Otherwise, the new velocity is set toward
the connected drone by a discretized version of the
distributed consensus algorithm with a predefined

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 31

system DroneControl
features

iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
cX: in data port Base_Types::Float;
cY: in data port Base_Types::Float;
vX: out data port Base_Types::Float;
vY: out data port Base_Types::Float;

end DroneControl;

system implementation DroneControl.impl
subcomponents

ctrlProc: process DroneControlProc.impl;
connections

C1: port ctrlProc.oX -> oX;
C2: port ctrlProc.oY -> oY;
C3: port iX -> ctrlProc.iX;
C4: port iY -> ctrlProc.iY;
C5: port cX -> ctrlProc.cX;
C6: port cY -> ctrlProc.cY;
C7: port ctrlProc.vX -> vX;
C8: port ctrlProc.vY -> vY;

end DroneControl.impl;

Figure 21 A controller system component.

process DroneControlProc
features

iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
cX: in data port Base_Types::Float;
cY: in data port Base_Types::Float;
vX: out data port Base_Types::Float;
vY: out data port Base_Types::Float;

end DroneControlProc;

process implementation DroneControlProc.impl
subcomponents

cThread: process DroneControlThread.impl;
connections

C1: port cThread.oX -> oX;
C2: port cThread.oY -> oY;
C3: port iX -> cThread.iX;
C4: port iY -> cThread.iY;
C5: port cX -> cThread.cX;
C6: port cY -> cThread.cY;
C7: port cThread.vX -> vX;
C8: port cThread.velY -> vY;

end DroneControlProc.impl;

Figure 22 Controller process component.

thread DroneControlThread
features
iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
cX: in data port Base_Types::Float;
cY: in data port Base_Types::Float;
vX: out data port Base_Types::Float;
vY: out data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end DroneControlThread;

thread implementation DroneControlThread.impl
subcomponents
cls: data Base_Types::Boolean

{Data_Model::Initial_Value => ("false");};
annex behavior_specification {**
variables

nx, ny : Base_Types::Float;
states

init: initial complete state;
exec, output: state;

transitions
init -[on dispatch]-> exec;
exec -[abs(cX - iX) < 0.1 and

abs(cY - iY) < 0.1]-> output {
vX := 0; vY := 0; cls := true };

exec -[otherwise]-> output {
nx := - #DroneSpec::A * (cX - iX);
ny := - #DroneSpec::A * (cY - iY);
if (nx > 0.3) vX := 2.5 elsif (nx > 0.15)

if (cls) vX := 1.5 else vX := 0.0 end if
else vX := -2.5 end if;
if (ny > 0.3) vY := 2.5 elsif (ny > 0.15)

if (cls) vY := 1.5 else vY := 0.0 end if
else vY := -2.5 end if; cls := false };

output -[]-> init { oX := cX; oY := cY }; **};
end DroneControlThread.impl;

Figure 23 Controller thread.

set of velocities. Finally, the current position is
assigned to the output ports oX and oY.

Figure 24 shows an environment component.
Data components x, y, velx and vely represent
the position and velocity of the drone. The values
of x and y are sent to the controller through the
output ports cX and cY. When the controller sends
an actuation command, the values of velx and
vely are updated by the values of the input ports
vX and vY. The continuous dynamics of (x, y) is
given as ordinary differential equations ẋ = velx
and ẏ = vely.

Springer Nature 2021 LATEX template

32 Formal Analysis of CPSs in AADL

system Environment
features
cX: out data port Base_Types::Float;
cY: out data port Base_Types::Float;
vX: in data port Base_Types::Float;
vY: in data port Base_Types::Float;

properties
Hybrid_SynchAADL::isEnvironment => true;

end Environment;

system implementation Environment.impl
subcomponents
x: data Base_Types::Float;
y: data Base_Types::Float;
velx: data Base_Types::Float;
vely: data Base_Types::Float;

connections
C1: port x -> cX; C2: port y -> cY;
C3: port vX -> velx; C4: port vY -> vely;

properties
Hybrid_SynchAADL::ContinuousDynamics =>

"d/dt(x) = velx; d/dt(y) = vely;";
Data_Model::Initial_Value => ("param")

applies to x, y, velx, vely;
end Environment.impl;

Figure 24 An environment component.

8.3 Formal Analysis

We consider two properties of the drone model:
drones do not collide (safety), and all drones
could eventually gather together (rendezvous).
Because the drone model is a distributed hybrid
system, these properties depend on the continu-
ous behavior perturbed by sensing and actuating
times based on imprecise local clocks. We analyze
them up to bound 500 ms using portfolio analysis.

invariant [safety]:
?initial ==> not ?collision in time 500;

reachability [rendezvous]:
?initial ==> ?gather in time 500;

We define three atomic propositions for four
drones dr1, dr2, dr3, and dr4 as follows. Two
drones collide if the (horizontal and vertical) dis-
tance between them is less than 0.1. All nodes have
gathered if each pairwise distance is less than 2.0.
There are infinitely many initial states satisfying
the proposition initial.

proposition [collision]:
(abs(dr1.env.x - dr2.env.x) < 0.1 and

abs(dr1.env.y - dr2.env.y) < 0.1) or
(abs(dr1.env.x - dr3.env.x) < 0.1 and

abs(dr1.env.y - dr3.env.y) < 0.1) or
...

Figure 25 Results for the two properties.

(abs(dr3.env.x - dr4.env.x) < 0.1 and
abs(dr3.env.y - dr4.env.y) < 0.1);

proposition [gather]:
abs(dr1.env.x - dr2.env.x) < 2.0 and
abs(dr1.env.y - dr2.env.y) < 2.0 and
abs(dr1.env.x - dr3.env.x) < 2.0 and
abs(dr1.env.y - dr3.env.y) < 2.0 and
...
abs(dr3.env.x - dr4.env.x) < 2.0 and
abs(dr3.env.y - dr4.env.y) < 2.0;

proposition [initial]:
abs(dr1.env.x - 1.2) < 0.1 and
abs(dr1.env.y - 1.7) < 0.1 and
abs(dr2.env.x + 1.7) < 0.1 and
abs(dr2.env.y + 1.2) < 0.1 and
abs(dr3.env.x - 1.7) < 0.1 and
abs(dr3.env.y - 1.2) < 0.1 and
abs(dr4.env.x + 1.2) < 0.1 and
abs(dr4.env.y + 1.7) < 0.1;

The result of the analysis is shown in Figure 25.
A witness for rendezvous is found by symbolic
analysis in 2.0 seconds, and a counterexample is
found for safety by randomized simulation in 0.2
seconds. A counterexample of safety is shown in
the editor as a sequence of states. The invariant
may have been violated because the drones can
have any speed in the initial state.

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 33

Figure 26 Results for the modified properties.

We modify safety and rendezvous by adding
a constraint velconst to the initial condition. As
shown in Figure 26, symbolic reachability analysis
verifies that all possible behaviors up to the bound
satisfy this modified safety property.

invariant [safety]: ?initial and ?velconst
==> not ?collision in time 500;

reachability [rendezvous]: ?initial and ?velconst
==> ?gather in time 500;

proposition [velconst]:
abs(dr1.env.vx) <= 1 and abs(dr1.env.vy) <= 1 and
abs(dr2.env.vx) <= 1 and abs(dr2.env.vy) <= 1 and
abs(dr3.env.vx) <= 1 and abs(dr3.env.vy) <= 1 and
abs(dr4.env.vx) <= 1 and abs(dr4.env.vy) <= 1;

Although the time bound in the example is
small, our verification involves infinitely many
(continuous) behaviors, for all possible sampling
and actuation times, local clocks, initial states,
etc. We therefore precisely verify that the “local”
behaviors, perturbed by sampling/actuation times
clock skews, are all correct, which is an important
problem for virtually synchronous CPSs.

9 Experimental Evaluation

This section evaluates the HybridSynchAADL
tool by addressing the following questions men-
tioned in the introduction:

1. How effective is our symbolic analysis method
compared to other state-of-the-art formal
analysis tools for CPSs?

2. How effective is our portfolio analysis method
for finding bugs?

3. How effective is our state merging technique?
4. How effective is Hybrid PALS for reducing

the complexity of model checking virtually
synchronous CPSs?

To answer these questions, we have analyzed
HybridSynchAADL models of networked water
tank and thermostat controllers (adapted from
[37–39]), and rendezvous and formation control for
distributed drones. Many variants of these models
are considered: different numbers of components,
single-integrator and double-integrator dynamics,
different sampling and actuating times, etc.

We have run all experiments on Intel Xeon
2.8GHz with 256 GB memory. For our tool, we
use a specialized version of Maude with Yices 2.6
for nonlinear polynomial arithmetic [40]. We have
repeated each experiment 10 times (with different
random seeds) and report the average results. The
models and the experimental results are available
at https://hybridsynchaadl.github.io/sttt.

9.1 Comparing with Other Tools

We compare our symbolic reachability analysis
method with four reachability analysis tools for
hybrid automata: HyComp [41], SpaceEx [42],
Flow* [43], and dReach [44]. For these tools, we
have “encoded” the synchronous designs of the
HybridSynchAADL models as networks of hy-
brid automata. Each (drone, water tank, and
thermostat) component is modeled as a hybrid au-
tomaton with three modes, where the behavior of
a controller is encoded as a single transition.

Figure 27 shows a hybrid automaton for a
single component of drone rendezvous with single-
integrator dynamics. It specifies the behavior of
an environment component (see Section 6), where
sampling occurs by sampling transitions, and con-
troller transition/actuation occurs by actuation
transitions.11 All components are synchronized
by transition synch, which assigns the output
(xout , yout) to the input (xin , yin) of the connected
component. For Flow* and dReach, which do not
support networks of hybrid automata, we build
flat hybrid automata using HYST [45].

We measure the execution times for analyzing
invariant properties up to bound 1, 000 ms, with
a timeout of 120 minutes. We consider two invari-
ant properties for each model: Inv>, which holds,
and Inv⊥, which does not hold. For SpaceEx, we
use PHAVer for linear dynamics, and STC for non-
linear polynomial dynamics. For Flow*, we use
adaptive steps, and TM orders 1 (for single) and
2 (for double). We use the default precision for
dReach, and BMC for HyComp.

The experimental results are summarized in
Table 1, as execution times (seconds) over time
bounds (B ·100 ms), where N denotes the number
of components. The results for double-integrator

11We use equivalent control logic for both HybridSynch-
AADL models and hybrid automata models. For the drone
rendezvous models, the control logics used in this experiment
are simplified from one presented in Section 8.

https://hybridsynchaadl.github.io/sttt

Springer Nature 2021 LATEX template

34 Formal Analysis of CPSs in AADL

Table 1 HybridSynchAADL vs. HyComp, SpaceEx, dReach, and Flow* (T/O denotes a timeout).

Model Tool

Inv> Inv⊥

N = 2 N = 3 N = 4 N = 5 N = 2 N = 3 N = 4 N = 5

Time B Time B Time B Time B Time B Time B Time B Time B

T
h

er
m

o
st

a
t HSAADL 297.1 10 410.5 8 186.8 7 260.5 7 31.4 7 28.7 6 6.3 4 8.6 4

HyComp 278.9 10 1,529.3 10 1,388.6 4 3,020.5 4 8.7 7 29.7 6 34.0 4 57.7 4
SpaceEx 5,150.3 8 5,279.1 2 9.4 1 1,329.7 1 8.2 7 T/O - T/O - T/O -
dReach 532.9 3 126.4 1 T/O - T/O - T/O - T/O - T/O - T/O -
Flow* 590.2 3 95.1 1 2,827.5 1 T/O - 56.2 5 T/O - T/O - T/O -

W
a
te

r
T

a
n

k HSAADL 9.1 10 20.1 10 40.0 10 67.9 10 4.8 8 3.5 5 9.4 6 9.3 5
HyComp 8.1 10 27.9 10 129.1 10 270.4 10 9.7 8 22.9 5 122.6 6 280.4 5
SpaceEx 36.2 10 6,970.1 4 4,839.2 1 T/O - 2.0 8 T/O - T/O - T/O -
dReach 340.1 2 101.7 1 T/O - T/O - T/O - T/O - T/O - T/O -
Flow* 92.0 2 286.7 1 T/O - T/O - 30.1 5 1,520.9 2 T/O - T/O -

R
en

d
(s

in
g
le

)

HSADDL 32.9 8 40.2 6 24.6 5 37.3 5 12.1 4 6.1 3 21.5 4 40.5 4
HyComp 3,584.2 8 2801.9 6 3320.6 5 225.1 3 12.9 4 25.7 3 T/O - T/O -
SpaceEx 11.1 1 18.5 1 401.5 1 T/O - T/O - T/O - T/O - T/O -
dReach 185.9 1 T/O - T/O - T/O - T/O - T/O - T/O - T/O -
Flow* 2271.9 1 T/O - T/O - T/O - T/O - 824.1 2 T/O - T/O -

F
o
rm

(s
in

g
le

)

HSAADL 155.9 9 73.8 7 1,623.2 8 304.1 7 1.7 2 2.8 2 59.8 3 23.2 3
HyComp 528.3 8 1,538.9 5 3,267.3 5 1,248.0 3 10.9 2 29.4 2 T/O - T/O -
SpaceEx 820.1 1 T/O - T/O - T/O - 27.1 1 T/O - T/O - T/O -
dReach 197.9 1 T/O - T/O - T/O - T/O - T/O - T/O - T/O -
Flow* T/O - T/O - T/O - T/O - T/O - T/O - T/O - T/O -

R
en

d
(d

o
u

b
le

) HSAADL 4.5 3 7.9 3 5.0 2 6.8 2 6.5 2 3.7 2 5.5 2 7.6 2
SpaceEx 290.1 1 T/O - T/O - T/O - 23.1 1 T/O - T/O - T/O -
dReach T/O - T/O - T/O - T/O - T/O - T/O - T/O - T/O -
Flow* 700.2 1 T/O - T/O - T/O - T/O - T/O - T/O - T/O -

F
o
rm

(d
o
u

b
le

) HSAADL 8.2 3 5.4 2 7.3 2 9.5 2 6.8 2 5.4 2 14.1 2 10.1 2
SpaceEx 6,237.3 1 T/O - T/O - T/O - T/O - T/O - T/O - T/O -
dReach T/O - T/O - T/O - T/O - T/O - T/O - T/O - T/O -
Flow* T/O - T/O - T/O - T/O - T/O - T/O - T/O - T/O -

NewRound

BeforeControl

BeforeControlC

AfterControl
<latexit sha1_base64="n9VVbQvRqxAU6DlKiZrec9a56BE=">AAACvnicbZHLbtNAFIbH5tJiLk1hg2AzIoBYoMhGVWGDFIkNyyKRtlIcRePxsTvqXMzMcRTLyivwfrwHD8DYsarS5Egj/fN//9zOZJUUDuP4TxDeu//g4cHho+jxk6fPjkbHz8+dqS2HGTfS2MuMOZBCwwwFSrisLDCVSbjIrr91/GIF1gmjf2JTwUKxUotCcIbeWo5+pxmUQrclwyuwkG+iwWBSlLqf5wbb9Ya+/0pT5VMC2xXIzXIdpekWNruwiVLQ+a1N0ghpKuHXTawCK0xHutzN6cvROJ7EfdFdkQxiTIY6Wx4HL/0deK1AI5fMuXkSV7homUXBJfj9awcV49eshLmXmilwH/OVqFwvF+26b+KGvvM0p4WxfmikvXt7dcuUc43KfLJ7grvLOnMvc6iYbWy+F3YOGiPdPjqvsfiyaIWuagTNt3csaknR0O4zaS4scJSNF4xb4Z9M+RWzjKP/ct/L5G7ndsX5p0lyOkl+nIynJ0NXD8lr8oZ8IAn5TKbkOzkjM8LJ3+BVMA7ehtOwCFVottEwGNa8IP9VuP4Hjj/cgQ==</latexit>

ẋ = velx

ẏ = vely

t period

<latexit sha1_base64="SURs3hXtve1My2KEI5iUgUWljWA=">AAACyHicbVFda9RAFJ3Erxq/tvoi+DK4KoJ2SUpRX4SCL+JTBbctbJYwmdxNh05m4szNuiHkxV/Rv9Y/UzrJBqndvTBw5px7h3PPpKUUFsPw0vPv3L13/8HOw+DR4ydPn412nx9bXRkOU66lNqcpsyCFgikKlHBaGmBFKuEkPf/W6SdLMFZo9QvrEuYFy5VYCM7QUcnoIk4hF6rJGZ6BgawNBoJJkav+nmlsVi1995XGhesS2CxBtskqiOO1WG+KdRCDym48EgdIYwm/aZU0jGPFEFr6ge7TGEorpFZ0PfHPRzIah5OwL7oJogGMyVBHya730rnhVQEKuWTWzqKwxHnDDAouwXmoLJSMn7McZg4qVoD9mC1FaXs4b1Z9nC1969SMLrRxRyHt2ZvTDSusrYvUdXY729taR27VLBbM1CbbKnYMai3tNnVW4eLLvBGqrBAUX3tcVJKipt230kwY4ChrBxg3wq1M+RkzLmr3+S7L6HZym+B4fxJ9mkQ/D8aHB0OqO+QVeU3ek4h8JofkOzkiU8LJlffG2/Mm/g+/9P/49brV94aZF+S/8v9eA6KY320=</latexit>

ẋ = velx

ẏ = vely

t uactuate + 2✏

<latexit sha1_base64="SURs3hXtve1My2KEI5iUgUWljWA=">AAACyHicbVFda9RAFJ3Erxq/tvoi+DK4KoJ2SUpRX4SCL+JTBbctbJYwmdxNh05m4szNuiHkxV/Rv9Y/UzrJBqndvTBw5px7h3PPpKUUFsPw0vPv3L13/8HOw+DR4ydPn412nx9bXRkOU66lNqcpsyCFgikKlHBaGmBFKuEkPf/W6SdLMFZo9QvrEuYFy5VYCM7QUcnoIk4hF6rJGZ6BgawNBoJJkav+nmlsVi1995XGhesS2CxBtskqiOO1WG+KdRCDym48EgdIYwm/aZU0jGPFEFr6ge7TGEorpFZ0PfHPRzIah5OwL7oJogGMyVBHya730rnhVQEKuWTWzqKwxHnDDAouwXmoLJSMn7McZg4qVoD9mC1FaXs4b1Z9nC1969SMLrRxRyHt2ZvTDSusrYvUdXY729taR27VLBbM1CbbKnYMai3tNnVW4eLLvBGqrBAUX3tcVJKipt230kwY4ChrBxg3wq1M+RkzLmr3+S7L6HZym+B4fxJ9mkQ/D8aHB0OqO+QVeU3ek4h8JofkOzkiU8LJlffG2/Mm/g+/9P/49brV94aZF+S/8v9eA6KY320=</latexit>

ẋ = velx

ẏ = vely

t uactuate + 2✏

<latexit sha1_base64="hw9VHhfIUx7qreTZSVSJrFU67RQ=">AAACznicbVJdi9QwFE3rqmv92Fl9EXwJDoqoDO06qC/Cgi8+juDsLkyHkqZ3umHTpCa3w5RSfPVX+L/8N6adKuvOXAicnHNvcu9J0lIKi2H42/NvHdy+c/fwXnD/wcNHR6Pjx2dWV4bDnGupzUXKLEihYI4CJVyUBliRSjhPrz53+vkajBVafcO6hGXBciVWgjN0VDL6FaeQC9XkDC/BQNYGA8GkyFW/zzQ2m5a+/ETjwmUJbNYg22QTxPFWrHfFOohBZdcOiQOksYTvtEr+JlpWlBJa+oae0BhKK6RWdFv3r5tkNA4nYR90F0QDGJMhZsmx99T1xKsCFHLJrF1EYYnLhhkU3N0WxJWFkvErlsPCQcUKsG+ztShtD5fNpje1pS+cmtGVNm4ppD17vbphhbV1kbrMbiB7U+vIvZrFgpnaZHvFjkGtpd2nLipcfVw2QpUVguLbHleVpKhp97g0EwY4ytoBxo1wI1N+yQzj6L6A8zK66dwuODuZRO8n0dfp+HQ6uHpInpHn5BWJyAdySr6QGZkT7h14r7133tSf+Wu/9X9sU31vqHlC/gv/5x82A+Eo</latexit>

ẋ = velx

ẏ = vely

t usample + 2✏

sy
nc

h

<latexit sha1_base64="qc3woRYy4NgIiZ5xV6pQJRezU7U=">AAACv3icdVFda9swFJW9ry77aLq+DPoilhUGG8EupS0rhY697LGDpS3EwcjyTSoqS5p0ndYY/4b9vv2QvU92MtiS7ILQ0TnnwtW5mZHCYRT9DMIHDx89frL1tPfs+YuX2/2dV5dOl5bDiGup7XXGHEihYIQCJVwbC6zIJFxlt59b/WoO1gmtvmFlYFKwmRJTwRl6Ku3/kGlSMLwRWDOOJUNoaCLhO8XFVa7L7+kBTcA4IbWiyWlyB/kMktPeH+McZJPe0+6pTf3xrKFR73++asWX9gfRMOqKroN4CQZkWRfpTvA6yTUvC1DIJXNuHEcGJzWzKLiEppeUDgzjt2wGYw8VK8B9yOfCuA5O6vsuxYbuezWnU239UUg79u/umhXOVUXmne3IblVryY2aw4LZyuYbxZZBraXbpI5LnJ5MaqFMiaD4YsZpKSlq2m6T5sICR1l5wLgV/suU3zDrd+V37rOMV5NbB5cHw/hoGH89HJwfLlPdInvkDXlHYnJMzskXckFGhJNfwV7wNtgPP4WzUIVmYQ2DZc8u+afC6jchBNsY</latexit>

lactuate t uactuate + 2✏ ^ velx := 0 ^ vely := 0

sampling

actuation

<latexit sha1_base64="HMc4pA+DSsvaYdgoWmWRjsRPcHo=">AAACP3icbZDLSsNAFIYnXmu9tNWN4GawCC6kJFJUBKHgxmUFe4E2lMlk2g6dZMLMSbGEPolbfRAfwydwJ27dOUm70LYHDnz8/zlwzu9Fgmuw7Q9rbX1jc2s7t5Pf3ds/KBRLh00tY0VZg0ohVdsjmgkesgZwEKwdKUYCT7CWN7pP/daYKc1l+ASTiLkBGYS8zykBI/WKBcDdgMBQRsnt3RTbvWLZrthZ4WVw5lBG86r3StZx15c0DlgIVBCtO44dgZsQBZwKNs13Y80iQkdkwDoGQxIwfeGPeaQzdJPn7IspPjOuj/tSmQ4BZ+rf7YQEWk8Cz0ymF+tFLxVXehoCoibKX2mmCkgp9Cq3E0P/xk14GMXAQjq7sR8LDBKnaWKfK0ZBTAwQqrh5GdMhUYSCydxk6SwmtwzNy4pzVXEeq+VadZ5qDp2gU3SOHHSNaugB1VEDURSjF/SK3qx369P6sr5no2vWfOcI/Svr5xcWza7z</latexit>

t := 0 <latexit sha1_base64="O0kjQiZX17fcYBMWS+ipuEOwwQ8=">AAADCHicfVJdb9MwFHXC1whfHbwg8XJFxYREVyXTxCYGaBIvPA6JbpPqqnIct7Pmj2A7I1HaP8Cv4Q3xyq+Af4PTVsCWiitZPj7nXPn6+qa54NbF8a8gvHb9xs1bG7ejO3fv3X/Q2Xx4bHVhKBtQLbQ5TYllgis2cNwJdpobRmQq2El6/q7RTy6YsVyrj67K2UiSqeITTonz1LjzU4yxJO6Mu9oSmQs2ByzYJ3DLrWipL2AHMMstF1pBtIUP8GeWTRk+iDCOcG9Wbpd/criaz3owq7arSxS8hrifQCsbynYtzVnn9as3cyjhrx2q/1qraGvc6cb9eBHQBskKdNEqjsabwWOcaVpIphwVxNphEuduVBPjOPUXRLiwLCf0nEzZ0ENFJLO97ILndgFHdbn4jjk882oGE238Ug4W7L/ZNZHWVjL1zqZme1VryLWadZKYymRrxYZxWgu7Th0WbrI/8t3PC8cUXdY4KQQ4Dc1YQMYNo05UHhBquH8y0DNiCHV+eHwvk6uda4PjnX7ysp982O0e7q66uoGeoKfoOUrQHjpE79ERGiAavA2yQAYq/BJ+Db+F35fWMFjlPEKXIvzxG9iU9ZM=</latexit>

lsample t usample + 2✏ ^
|x � xin |, |y � yin | < 0.1 ^

xsample := x ^ ysample := y

<latexit sha1_base64="oGmlunY6b3S+siZ+AWVHbdbX0p8=">AAADAnicfVJNbxMxEPUuXyV8peWCxMUiAhXRRrtVRSsKUiUuHItE2kpxiLzeycaq1za2t+xqkxu/hhviyq/gxr/BmwREmoiRLD+/98YajyfRglsXRb+C8Nr1Gzdvbdxu3bl77/6D9ubWqVWFYdBjSihznlALgkvoOe4EnGsDNE8EnCUXbxv97BKM5Up+cJWGQU4zyUecUeepYfunGJKcujF3taW5FjDFRMAn7OZbsaK+wHuYgLZcKImfkSPyGdIMWoS0iIRse1Luln9zuJxOdvCk2q2WKPwaR934+XJ2uVpHc1a6fvVmikv8x0uOcPVfazVsd6JuNAu8CuIF6KBFnAw3g0ckVazIQTomqLX9ONJuUFPjOPPXt0hhQVN2QTPoeyhpDnYnveTazuCgLmcfMcVPvZrikTJ+SYdn7L/ZNc2trfLEO5uK7VWtIddq1uXUVCZdKzaMU0rYdWq/cKPDge+7LhxINq9xVAjsFG4GAqfcAHOi8oAyw/2TMRtTQ5nzY+N7GV/t3Co43evGL7vx+/3O8f6iqxvoMXqCtlGMDtAxeodOUA+x4DD4GGTBOPwSfg2/hd/n1jBY5DxESxH++A0favUE</latexit>

lsample t usample + 2✏ ^
¬(|x � xin |, |y � yin | < 0.1) ^
xsample := x ^ ysample := y

<latexit sha1_base64="LXKqBG7kG3Y/XZazOCxx/d7FKjE=">AAADiHicnVJNb9NAEF3XfBTz1cIFicuKCFREG9lVoYBUqYILxyKRplI2WOv1JF117TW74xDL8l/jf3DnCr+BdZKikuQCI632zbyZ0dvZSQolLYbhd2/Dv3b9xs3NW8HtO3fv3d/afnBqdWkE9IRW2pwl3IKSOfRQooKzwgDPEgX95OJ9y/cnYKzU+SesChhmfJzLkRQcXSje9voqZhnHc4k1F1hyhIYyBV8ozq9ylX5B9ymDwkqlc/osYCxgCFO0WCkI2FdIx+5K5HiG4loeRc3nl3QndXAvWnSf/mkr84buXfEtzwp1KaKtcXCXoWa79DJlAqqJp3NXF/Xbo4aKWD4P/lNLtaSl+mct1aqWeKsTdsOZ0VUQLUCHLOzEfcUjlmpRZpCjUNzaQRQWOKy5QSmciICVFgouLvgYBg7mPAO7m05kYWdwWE9n69DQp45N6Ugbd3Kks+jV6ppn1lZZ4jJb1XaZa4NrOYsZN5VJ15JtBLVWdh07KHH0eujmW5QIuZhrHJWKoqbtWtJUGhCoKge4MNI9mYpzbtzOueV1s4yWJ7cKTve70atu9PGgc3ywmOomeUyekB0SkUNyTD6QE9Ijwvvm/fB+er/8wA/9Q//NPHXDW9Q8JH+Z/+43wJ4kDg==</latexit>

lactuate t uactuate + 2✏

^V5
i=1(di�1 xin � xsample di ! velx := ci)

^V5
i=1(di�1 yin � ysample di ! vely := ci)

<latexit sha1_base64="3sbaV/D4Nr/lmP6Ze3E/ZNkbTm0=">AAAC4nicdZLPatwwEMZlN21T99+muQR6EV1aeiiLXUITGhICPTTHBLpJYL0ssjy7EZEsIY3TGLMvkFvINU/Rt+nbVPZuaJPdDgg+5vfNMBopM1I4jOPfQfho5fGTp6vPoucvXr563Vl7c+x0aTn0uZbanmbMgRQF9FGghFNjgalMwkl2/q3hJxdgndDFD6wMDBWbFGIsOEOfGnV+fYiQ7tJUMTwTWBuwQudTGqU76U/IJ5DuRGkaNabWok39dXdKY3rHZ/RydNdAlzi9Z/2LHFNGwpLe1f+rq8XqaNTpxr24DbookrnoknkcjtaCjTTXvFRQIJfMuUESGxzWzKLgvmeUlg4M4+dsAgMvC6bAfcovhHGtHNaX7aKn9L2nOR1r60+BtM3+W10z5VylMu9sxnYPWZNcyhwqZiubL4VNBrWWbhkdlDjeHtaiMCVCwWczjktJUdPmwWkuLHCUlReMW+GvTPkZs4yj/xZ+l8nDzS2K48+95EsvOdrs7m/Ot7pK3pJ35CNJyBbZJwfkkPQJDzaCveB7cBDm4VV4Hd7MrGEwr1kn9yK8/QPkeOVG</latexit>

t = period ^
t := 0 ^
xout := xsample ^
yout := ysample

Figure 27 A hybrid automaton component.

dynamics do not include HyComp, which does
not support nonlinear polynomial dynamics. For
Inv>, Table 1 shows the largest time bound for
which the tool could prove the absence of coun-
terexamples. Often, tools timed out when trying
to verify that Inv> holds up to time bound 500.
For Inv⊥, the table shows the smallest bound for
which the tool found counterexamples.

As shown in Table 1, HybridSynchAADL out-
performs the other tools in most cases, in partic-
ular for complex models with larger N . Consider
“Rend (single)” (rendezvous with single-integrator
dynamics) with N = 4. For Inv>, HybridSynch-
AADL needs 24.6 seconds for B = 5, whereas
SpaceEx needs 401.5 seconds for B = 1 and timed
out for B > 1. For Inv⊥, HybridSynchAADL

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 35

found a counterexample at B = 4 in 21.5 sec-
onds, whereas all other tools timed out. It is worth
noting that Flow* occasionally found (spurious)
counterexamples at smaller bounds, because of
over-approximation by the Taylor model flowpipe
construction.

9.1.1 Fairness of the Comparison

How trustworthy and fair are our comparisons
with the other tools? The “hand-coded” models
for the other tools used in the experiments may
be overly complex or behave differently from the
original HybridSynchAADL models. To achieve a
fair comparison, we have manually “optimized”
the hand-coded models to minimize the number
of modes and transitions while maintaining the
same synchronous behavior as the corresponding
HybridSynchAADL models.

For example, we have also defined a hybrid
automaton model shown in Figure 28 for drone
rendezvous with single integrator dynamics, which
includes a “direct” representation of the behavior
actions in the original model. This model has more
modes and transitions than the hand-optimized
model in Figure 27 used in the experiments, which
results in worse performance, e.g., as shown in
Table 2 for analyzing Inv> using SpaceEx.12

We have also closely inspected both the mod-
els and the analysis results to ensure that such
hand-optimized models behave as the correspond-
ing HybridSynchAADL models. As discussed in
Section 7.4, the results of analyzing the Hybrid-
SynchAADL models are consistent with the re-
sults of analyzing the hand-coded models using
the other tools; in particular, a counterexample
in one model is also a counterexample in the
corresponding model.

9.2 Effect of Portfolio Analysis

We evaluate the power of HybridSynchAADL for
analyzing invariant properties. We measure the
time taken to find counterexamples in “faulty”
models obtained by modifying the sampling and
actuating times using HybridSynchAADL’s three
analysis functions. We use different time bounds
for observing analysis results with varying time
bounds. Table 3 summarizes the time parameters

12To reduce time-outs when analyzing the complex models,
we use narrower initial conditions than those used for Table 1.

NewRound

AfterControl
<latexit sha1_base64="n9VVbQvRqxAU6DlKiZrec9a56BE=">AAACvnicbZHLbtNAFIbH5tJiLk1hg2AzIoBYoMhGVWGDFIkNyyKRtlIcRePxsTvqXMzMcRTLyivwfrwHD8DYsarS5Egj/fN//9zOZJUUDuP4TxDeu//g4cHho+jxk6fPjkbHz8+dqS2HGTfS2MuMOZBCwwwFSrisLDCVSbjIrr91/GIF1gmjf2JTwUKxUotCcIbeWo5+pxmUQrclwyuwkG+iwWBSlLqf5wbb9Ya+/0pT5VMC2xXIzXIdpekWNruwiVLQ+a1N0ghpKuHXTawCK0xHutzN6cvROJ7EfdFdkQxiTIY6Wx4HL/0deK1AI5fMuXkSV7homUXBJfj9awcV49eshLmXmilwH/OVqFwvF+26b+KGvvM0p4WxfmikvXt7dcuUc43KfLJ7grvLOnMvc6iYbWy+F3YOGiPdPjqvsfiyaIWuagTNt3csaknR0O4zaS4scJSNF4xb4Z9M+RWzjKP/ct/L5G7ndsX5p0lyOkl+nIynJ0NXD8lr8oZ8IAn5TKbkOzkjM8LJ3+BVMA7ehtOwCFVottEwGNa8IP9VuP4Hjj/cgQ==</latexit>

ẋ = velx

ẏ = vely

t period

<latexit sha1_base64="hw9VHhfIUx7qreTZSVSJrFU67RQ=">AAACznicbVJdi9QwFE3rqmv92Fl9EXwJDoqoDO06qC/Cgi8+juDsLkyHkqZ3umHTpCa3w5RSfPVX+L/8N6adKuvOXAicnHNvcu9J0lIKi2H42/NvHdy+c/fwXnD/wcNHR6Pjx2dWV4bDnGupzUXKLEihYI4CJVyUBliRSjhPrz53+vkajBVafcO6hGXBciVWgjN0VDL6FaeQC9XkDC/BQNYGA8GkyFW/zzQ2m5a+/ETjwmUJbNYg22QTxPFWrHfFOohBZdcOiQOksYTvtEr+JlpWlBJa+oae0BhKK6RWdFv3r5tkNA4nYR90F0QDGJMhZsmx99T1xKsCFHLJrF1EYYnLhhkU3N0WxJWFkvErlsPCQcUKsG+ztShtD5fNpje1pS+cmtGVNm4ppD17vbphhbV1kbrMbiB7U+vIvZrFgpnaZHvFjkGtpd2nLipcfVw2QpUVguLbHleVpKhp97g0EwY4ytoBxo1wI1N+yQzj6L6A8zK66dwuODuZRO8n0dfp+HQ6uHpInpHn5BWJyAdySr6QGZkT7h14r7133tSf+Wu/9X9sU31vqHlC/gv/5x82A+Eo</latexit>

ẋ = velx

ẏ = vely

t usample + 2✏

sy
nc

h

sampling

actuation

<latexit sha1_base64="HMc4pA+DSsvaYdgoWmWRjsRPcHo=">AAACP3icbZDLSsNAFIYnXmu9tNWN4GawCC6kJFJUBKHgxmUFe4E2lMlk2g6dZMLMSbGEPolbfRAfwydwJ27dOUm70LYHDnz8/zlwzu9Fgmuw7Q9rbX1jc2s7t5Pf3ds/KBRLh00tY0VZg0ohVdsjmgkesgZwEKwdKUYCT7CWN7pP/daYKc1l+ASTiLkBGYS8zykBI/WKBcDdgMBQRsnt3RTbvWLZrthZ4WVw5lBG86r3StZx15c0DlgIVBCtO44dgZsQBZwKNs13Y80iQkdkwDoGQxIwfeGPeaQzdJPn7IspPjOuj/tSmQ4BZ+rf7YQEWk8Cz0ymF+tFLxVXehoCoibKX2mmCkgp9Cq3E0P/xk14GMXAQjq7sR8LDBKnaWKfK0ZBTAwQqrh5GdMhUYSCydxk6SwmtwzNy4pzVXEeq+VadZ5qDp2gU3SOHHSNaugB1VEDURSjF/SK3qx369P6sr5no2vWfOcI/Svr5xcWza7z</latexit>

t := 0

BeforeControl
<latexit sha1_base64="SURs3hXtve1My2KEI5iUgUWljWA=">AAACyHicbVFda9RAFJ3Erxq/tvoi+DK4KoJ2SUpRX4SCL+JTBbctbJYwmdxNh05m4szNuiHkxV/Rv9Y/UzrJBqndvTBw5px7h3PPpKUUFsPw0vPv3L13/8HOw+DR4ydPn412nx9bXRkOU66lNqcpsyCFgikKlHBaGmBFKuEkPf/W6SdLMFZo9QvrEuYFy5VYCM7QUcnoIk4hF6rJGZ6BgawNBoJJkav+nmlsVi1995XGhesS2CxBtskqiOO1WG+KdRCDym48EgdIYwm/aZU0jGPFEFr6ge7TGEorpFZ0PfHPRzIah5OwL7oJogGMyVBHya730rnhVQEKuWTWzqKwxHnDDAouwXmoLJSMn7McZg4qVoD9mC1FaXs4b1Z9nC1969SMLrRxRyHt2ZvTDSusrYvUdXY729taR27VLBbM1CbbKnYMai3tNnVW4eLLvBGqrBAUX3tcVJKipt230kwY4ChrBxg3wq1M+RkzLmr3+S7L6HZym+B4fxJ9mkQ/D8aHB0OqO+QVeU3ek4h8JofkOzkiU8LJlffG2/Mm/g+/9P/49brV94aZF+S/8v9eA6KY320=</latexit>

ẋ = velx

ẏ = vely

t uactuate + 2✏

Close
<latexit sha1_base64="SURs3hXtve1My2KEI5iUgUWljWA=">AAACyHicbVFda9RAFJ3Erxq/tvoi+DK4KoJ2SUpRX4SCL+JTBbctbJYwmdxNh05m4szNuiHkxV/Rv9Y/UzrJBqndvTBw5px7h3PPpKUUFsPw0vPv3L13/8HOw+DR4ydPn412nx9bXRkOU66lNqcpsyCFgikKlHBaGmBFKuEkPf/W6SdLMFZo9QvrEuYFy5VYCM7QUcnoIk4hF6rJGZ6BgawNBoJJkav+nmlsVi1995XGhesS2CxBtskqiOO1WG+KdRCDym48EgdIYwm/aZU0jGPFEFr6ge7TGEorpFZ0PfHPRzIah5OwL7oJogGMyVBHya730rnhVQEKuWTWzqKwxHnDDAouwXmoLJSMn7McZg4qVoD9mC1FaXs4b1Z9nC1969SMLrRxRyHt2ZvTDSusrYvUdXY729taR27VLBbM1CbbKnYMai3tNnVW4eLLvBGqrBAUX3tcVJKipt230kwY4ChrBxg3wq1M+RkzLmr3+S7L6HZym+B4fxJ9mkQ/D8aHB0OqO+QVeU3ek4h8JofkOzkiU8LJlffG2/Mm/g+/9P/49brV94aZF+S/8v9eA6KY320=</latexit>

ẋ = velx

ẏ = vely

t uactuate + 2✏

Normal
<latexit sha1_base64="SURs3hXtve1My2KEI5iUgUWljWA=">AAACyHicbVFda9RAFJ3Erxq/tvoi+DK4KoJ2SUpRX4SCL+JTBbctbJYwmdxNh05m4szNuiHkxV/Rv9Y/UzrJBqndvTBw5px7h3PPpKUUFsPw0vPv3L13/8HOw+DR4ydPn412nx9bXRkOU66lNqcpsyCFgikKlHBaGmBFKuEkPf/W6SdLMFZo9QvrEuYFy5VYCM7QUcnoIk4hF6rJGZ6BgawNBoJJkav+nmlsVi1995XGhesS2CxBtskqiOO1WG+KdRCDym48EgdIYwm/aZU0jGPFEFr6ge7TGEorpFZ0PfHPRzIah5OwL7oJogGMyVBHya730rnhVQEKuWTWzqKwxHnDDAouwXmoLJSMn7McZg4qVoD9mC1FaXs4b1Z9nC1969SMLrRxRyHt2ZvTDSusrYvUdXY729taR27VLBbM1CbbKnYMai3tNnVW4eLLvBGqrBAUX3tcVJKipt230kwY4ChrBxg3wq1M+RkzLmr3+S7L6HZym+B4fxJ9mkQ/D8aHB0OqO+QVeU3ek4h8JofkOzkiU8LJlffG2/Mm/g+/9P/49brV94aZF+S/8v9eA6KY320=</latexit>

ẋ = velx

ẏ = vely

t uactuate + 2✏

<latexit sha1_base64="sdXXtOqhOW4fjgICz8qiKmGqQCE=">AAACw3icbVFda9swFJW9r877SreXwR4mFgYdG8EuZRsrg8IY7LGDpS1EwcjyTSoiW5p0ndUY/4r9uv2UvU12MmiTXBA6OudcuDo3M0o6jOM/QXjr9p279/buRw8ePnr8ZLD/9MzpygoYC620vci4AyVLGKNEBRfGAi8yBefZ4kunny/BOqnLH1gbmBZ8XsqZFBw9lQ5+q5QVHC8lNlxgxRFayhT8pLi6qm35LT2kDIyTSpcRYxE7Zr8gnwM7ptF/8xJUm17R/qlN8+lzS+Nrxpu+esOXDobxKO6LboNkDYZkXafpfvCc5VpUBZQoFHduksQGpw23KIWCNmKVA8PFgs9h4mHJC3Dv8qU0rofT5qpPsqWvvZrTmbb+lEh79np3wwvn6iLzzm5kt6l15E7NYcFtbfOdYseg1srtUicVzj5OG1maCqEUqxlnlaKoabdRmksLAlXtARdW+i9Tccmt35ffu88y2UxuG5wdjpL3o+T70fDkaJ3qHnlBXpEDkpAP5IR8I6dkTAT5G7wMDoI34ddwEdoQV9YwWPc8IzcqbP8ByjbcDA==</latexit>

lactuate t uactuate + 2✏

^ velx := 0 ^ vely := 0

Step1
<latexit sha1_base64="SURs3hXtve1My2KEI5iUgUWljWA=">AAACyHicbVFda9RAFJ3Erxq/tvoi+DK4KoJ2SUpRX4SCL+JTBbctbJYwmdxNh05m4szNuiHkxV/Rv9Y/UzrJBqndvTBw5px7h3PPpKUUFsPw0vPv3L13/8HOw+DR4ydPn412nx9bXRkOU66lNqcpsyCFgikKlHBaGmBFKuEkPf/W6SdLMFZo9QvrEuYFy5VYCM7QUcnoIk4hF6rJGZ6BgawNBoJJkav+nmlsVi1995XGhesS2CxBtskqiOO1WG+KdRCDym48EgdIYwm/aZU0jGPFEFr6ge7TGEorpFZ0PfHPRzIah5OwL7oJogGMyVBHya730rnhVQEKuWTWzqKwxHnDDAouwXmoLJSMn7McZg4qVoD9mC1FaXs4b1Z9nC1969SMLrRxRyHt2ZvTDSusrYvUdXY729taR27VLBbM1CbbKnYMai3tNnVW4eLLvBGqrBAUX3tcVJKipt230kwY4ChrBxg3wq1M+RkzLmr3+S7L6HZym+B4fxJ9mkQ/D8aHB0OqO+QVeU3ek4h8JofkOzkiU8LJlffG2/Mm/g+/9P/49brV94aZF+S/8v9eA6KY320=</latexit>

ẋ = velx

ẏ = vely

t uactuate + 2✏

Step2
<latexit sha1_base64="SURs3hXtve1My2KEI5iUgUWljWA=">AAACyHicbVFda9RAFJ3Erxq/tvoi+DK4KoJ2SUpRX4SCL+JTBbctbJYwmdxNh05m4szNuiHkxV/Rv9Y/UzrJBqndvTBw5px7h3PPpKUUFsPw0vPv3L13/8HOw+DR4ydPn412nx9bXRkOU66lNqcpsyCFgikKlHBaGmBFKuEkPf/W6SdLMFZo9QvrEuYFy5VYCM7QUcnoIk4hF6rJGZ6BgawNBoJJkav+nmlsVi1995XGhesS2CxBtskqiOO1WG+KdRCDym48EgdIYwm/aZU0jGPFEFr6ge7TGEorpFZ0PfHPRzIah5OwL7oJogGMyVBHya730rnhVQEKuWTWzqKwxHnDDAouwXmoLJSMn7McZg4qVoD9mC1FaXs4b1Z9nC1969SMLrRxRyHt2ZvTDSusrYvUdXY729taR27VLBbM1CbbKnYMai3tNnVW4eLLvBGqrBAUX3tcVJKipt230kwY4ChrBxg3wq1M+RkzLmr3+S7L6HZym+B4fxJ9mkQ/D8aHB0OqO+QVeU3ek4h8JofkOzkiU8LJlffG2/Mm/g+/9P/49brV94aZF+S/8v9eA6KY320=</latexit>

ẋ = velx

ẏ = vely

t uactuate + 2✏

<latexit sha1_base64="H6y/VOwIEQfwFSKFxCmSTqLrwtA=">AAAC1nicbVJdi9QwFE3r11pXd1ZfBF+CgyIoQzssu+IoLPji4wrO7sB0KGl6ZzZsmtTkdpxS6pv46q/wP/lvTDuzoDtzIeTknHvg5iRpIYXFMPzj+bdu37l7b+9+8GD/4aOD3uHjc6tLw2HMtdRmkjILUigYo0AJk8IAy1MJF+nVx1a/WIKxQqsvWBUwy9lCibngDB2V9H7LJM4ZXgqsGceSITQ0lvCV4nort+XXdEhjKKyQWtGXQRwH8TfIFhCPguveJcgmWdHuqIv63YeGXktq1QTxaLej2u2omiDp9cNB2BXdBtEG9MmmzpJD72mcaV7moJBLZu00Cguc1cyg4BLcDKWFgvErtoCpg4rlYN9kS1HYDs7qVRduQ184NaNzbdxSSDv2X3fNcmurPHWd7cD2ptaSOzWLOTOVyXaKLYNaS7tLnZY4fzurhSpKBMXXM85LSVHT9pFpJgxwlJUDjBvhrkz5JTPuCd1XcFlGN5PbBufDQXQ8iD4f9U+PNqnukWfkOXlFInJCTsknckbGhHv73tAbee/9if/d/+H/XLf63sbzhPxX/q+/dXfkfQ==</latexit>

lactuate t uactuate + 2✏

^ velx :=nx ^ vely :=ny

<latexit sha1_base64="8o6EWa6QbqvH7v5dJpYTxIjGN8w=">AAACXXicbZHNSsNAFIUn8a/Wv1YXCm4Gi+DChkSKunBRcOOygq1CW8pkMrVDJ5kwc1Ma0j6FT+NWn8KVr+Kk7UJtLwwczncv3HvGjwXX4Lpflr22vrG5Vdgu7uzu7R+UyoctLRNFWZNKIdWLTzQTPGJN4CDYS6wYCX3Bnv3hfc6fR0xpLqMnSGPWDclrxPucEjBWr1SdjKvjXickMOCQ8Wg6ucSTtJr+sfAddh0P42KvVHEdd1Z4WXgLUUGLavTK1kknkDQJWQRUEK3bnhtDNyMKOBVsWuwkmsWEDskraxsZkZDpy2DEYz2T3Ww8u3GKzw0NcF8q8yLAM/f3dEZCrdPQN5355vo/y82VTENIVKqClTB3QEqhV9F2Av3brkkoToBFdL5jPxEYJM6zxgFXjIJIjSBUcXMypgOiCAXzIyZL739yy6J15XjXjvdYq9Rri1QL6BSdoQvkoRtURw+ogZqIojf0jj7Qp/Vtb9i79v681bYWM0foT9nHP6gBtto=</latexit>|x � xin |, |y � yin | < 0.1

<latexit sha1_base64="ZI+kOYSwT/gtApHnBe4BS/cH6v0=">AAACX3icbZHNTgIxFIXL+IeoiLrRuGkkJpgIzhiiLlyQuHGJiSgJENLpFGzotJP2DmECPIZP41YfwqVvYgdY+MNNmpyc797k3lM/EtyA635mnJXVtfWN7GZua3snv1vY238yKtaUNagSSjd9YpjgkjWAg2DNSDMS+oI9+4O7lD8PmTZcyUdIItYJSV/yHqcErNUtXLQl6+PSZFQeddshgRcOYy6nk/NJUk5+OfgWe2e5bqHoVtxZ4f/CW4giWlS9u5c5bAeKxiGTQAUxpuW5EXTGRAOngk1z7diwiNAB6bOWlZKEzJwHQx6ZmeyMR7Mrp/jU0gD3lLZPAp65P6fHJDQmCX3bma5t/rLUXMoMhEQnOlgKUweUEmYZbcXQu+nYeKIYmKTzHXuxwKBwmjYOuGYURGIFoZrbkzF9IZpQsH9is/T+JvdfPF1WvKuK91At1qqLVLPoGJ2gEvLQNaqhe1RHDUTRK3pD7+gj8+VsOHmnMG91MouZA/SrnKNvWgK4Nw==</latexit> ¬(
|x

�
x
in

|,|
y
�

y i
n
|<

1)

<latexit sha1_base64="3sbaV/D4Nr/lmP6Ze3E/ZNkbTm0=">AAAC4nicdZLPatwwEMZlN21T99+muQR6EV1aeiiLXUITGhICPTTHBLpJYL0ssjy7EZEsIY3TGLMvkFvINU/Rt+nbVPZuaJPdDgg+5vfNMBopM1I4jOPfQfho5fGTp6vPoucvXr563Vl7c+x0aTn0uZbanmbMgRQF9FGghFNjgalMwkl2/q3hJxdgndDFD6wMDBWbFGIsOEOfGnV+fYiQ7tJUMTwTWBuwQudTGqU76U/IJ5DuRGkaNabWok39dXdKY3rHZ/RydNdAlzi9Z/2LHFNGwpLe1f+rq8XqaNTpxr24DbookrnoknkcjtaCjTTXvFRQIJfMuUESGxzWzKLgvmeUlg4M4+dsAgMvC6bAfcovhHGtHNaX7aKn9L2nOR1r60+BtM3+W10z5VylMu9sxnYPWZNcyhwqZiubL4VNBrWWbhkdlDjeHtaiMCVCwWczjktJUdPmwWkuLHCUlReMW+GvTPkZs4yj/xZ+l8nDzS2K48+95EsvOdrs7m/Ot7pK3pJ35CNJyBbZJwfkkPQJDzaCveB7cBDm4VV4Hd7MrGEwr1kn9yK8/QPkeOVG</latexit>

t = period ^
t := 0 ^
xout := xsample ^
yout := ysample

<latexit sha1_base64="iuGHDmruC50sg+Fr/XxpIWCExtQ=">AAACyHicfVHbahsxENVub+n25rQvgb6Iug2FtmY3hKQ0BAJ9KX1KoU4CljFa7dgRkVaqNJt4WfzSr8iv5WdKtbYLbWw6IHR0zhlpNJNbJT2m6U0U37l77/6DjYfJo8dPnj7rbD4/8aZyAvrCKOPOcu5ByRL6KFHBmXXAda7gNL/43Oqnl+C8NOV3rC0MNZ+UciwFx0CNOtdqxDTHc4mN59oqmFGm4AfFxVatqO/oDmVgvVSmpMk2O2BXUEwgYSyh09W72rOxzafDGZ3SP2Z2QOv/Wutke9Tppr10HnQVZEvQJcs4Hm1GW6wwotJQolDc+0GWWhw23KEU4YGEVR4sFxd8AoMAS67Bvy8upfVzOGym83bO6JugFnRsXFgl0jn7d3bDtfe1zoOzrdnf1lpyreZRc1e7Yq3YMmiM8uvUQYXjj8NGlrZCKMWixnGlKBrajpUW0oFAVQfAhZPhy1Scc8cFhuGHXma3O7cKTnZ62V4v+7bbPdpddnWDvCSvyFuSkX1yRL6QY9IngvyKXkcfol78NbbxVVwvrHG0zHlB/on452+afN58</latexit>

lsample t usample + 2✏ ^
xsample := x ^ ysample := y

<latexit sha1_base64="eALUy7pF362XiODg7s2RmGZ0Jpg=">AAAC03icbVJNb9QwEHXCVxs+uoULEheLFRKH7ZKgAgWpUiUuHIvEtpXWS+Q4s1mrjh3sSSGKckFc+RX8Kv4Nzu4iSrsjWXqe98aeeXZWKekwjn8H4Y2bt27f2dqO7t67/2BnsPvwxJnaCpgIo4w9y7gDJTVMUKKCs8oCLzMFp9n5+54/vQDrpNGfsKlgVvJCy7kUHH0qHfyKWCaLr5AXkLbyMOk+v6IRUzDHqWegkLrlShYa8i7KvWIv6ainv9AmZSXHhcRW6o7uXdo7XlYK1rK+pvMnsoiNGBo2on9luulW2FTtu8OOilRGDHT+7z5mZbHAWZQOhvE4Xga9DpI1GJJ1HKe7wWOWG1GXoFEo7tw0iSuctdyiFL61iNUOKi7OeQFTDzUvwY3yC1m5JZy135bOdvSZZ3M6N9YvjXSZvVzd8tK5psy8sh/FXeX65EbOYcltY/ONZJ9BY5TbxE5rnB/MvOtVjaDFqsd5rSga2r8wzaUFgarxgAsr/chULLjlAv0/8F4mV527Dk5ejpPX4+Tj/vBof+3qFnlCnpLnJCFvyBH5QI7JhIhgO3gRHARvw0nYht/DHytpGKxrHpH/Ivz5B4go4Xw=</latexit>

5̂

i=1

"
di�1 yin � ysample di

! ny := ci

#

<latexit sha1_base64="M7CuCIztk1T+eL5Xiw4CkHpoT2g=">AAAC03icbVJdb9MwFHXC1xa+OnhB4sWiQuKhKwnaxkCaNIkXHodEt0l1iRznNrXm2MG+Ga2ivCBe+RX8Kv4NTlvE2HolS8f3nGvfe+ysUtJhHP8Owlu379y9t7Ud3X/w8NHj3s6TU2dqK2AkjDL2POMOlNQwQokKzisLvMwUnGUXHzr+7BKsk0Z/xkUFk5IXWk6l4OhTae9XxDJZfIO8gLSRR0n7ZZ9GTMEUx56BQuqGK1loyNso94rdpKWe/krnKSs5ziQ2Urd098re8bJSsJZ1Na0/kUVswNCwAf0r0/N2hU3VvD9qqUhlxEDn/+5jVhYznERprx8P42XQmyBZgz5Zx0m6EzxjuRF1CRqF4s6Nk7jCScMtSuFbi1jtoOLighcw9lDzEtwgv5SVW8JJM18629KXns3p1Fi/NNJl9mp1w0vnFmXmld0o7jrXJTdyDktuFzbfSHYZNEa5Tey4xunhxLte1QharHqc1oqiod0L01xaEKgWHnBhpR+Zihm3XKD/B97L5LpzN8Hpm2FyMEw+7fWP99aubpHn5AV5RRLylhyTj+SEjIgItoPXwWHwLhyFTfg9/LGShsG65in5L8KffwCB2+F5</latexit>

5̂

i=1

"
di�1 xin � xsample di

! nx := ci

#

Figure 28 A complex hybrid automaton component.

Table 2 Analyzing Inv> using SpaceEx

Model
Figure 27 Figure 28

N Time B Time B

Thermostat 5 79.5 1 4,910.8 1
WaterTank 5 2,748.9 1 T/O -

Rend (single) 4 505.5 1 T/O -
Form (single) 3 507.9 1 730.4 1
Rend (double) 2 253.6 1 T/O -
Form (double) 2 6,027.6 1 T/O -

and invariant properties, with ε the maximal clock
skew. All models have period 100 (milliseconds).
The timeout is 20 minutes.

Table 4 shows the experimental results. For
symbolic analysis (symbolic), once a counterexam-
ple is found (FO) for one bound T , the results for
larger bounds T ′ ≥ T are exactly the same as
for T , since symbolic analysis uses a breadth-first
strategy. For randomized simulation (random), a
timeout means that a counterexample is not found
(NF) by repeated simulations until timed out.
The results for portfolio analysis, which are the
minimum values of randomized simulation and
symbolic analysis results, are shown in yellow.

As expected, symbolic analysis is effective for
finding subtle counterexamples, and randomized
simulation is effective for finding obvious bugs.
Since the injected faults are caused by excessive
sampling and actuating times, errors are easier
to find with a larger bound. As an example, see

Springer Nature 2021 LATEX template

36 Formal Analysis of CPSs in AADL

Table 3 Timing parameters and properties.

Model Sampling Actuation ε Invariant property

Thermostat 20 ∼ 30 60 ∼ 70 5 temperatures are between 20 and 50
Water tank 30 ∼ 40 70 ∼ 80 5 water levels are above 30
Rendezvous 30 ∼ 50 60 ∼ 80 10 distance between drones greater than 0.5
Formation 30 ∼ 50 60 ∼ 80 10 distance between drones greater than 0.3

“Form (single)” with N = 4. For B = 3, symbolic
analysis found a counterexample in less than 24
seconds while randomized simulation timed out.
However, for B = 4, randomized simulation found
a counterexample in less than 15 seconds. Portfolio
analysis is effective in both cases.

9.3 Effect of State Merging

We have performed symbolic analysis to generate
all reachable symbolic states up to given bounds,
with and without state merging. We measure the
execution time (seconds), the size of accumulated
SMT formulas (thousands), the number of calls
to the SMT solver, and the number of reachable
symbolic states, with a timeout of 3 hours. The
results are summarized in Table 5.

As shown, state merging significantly improves
the performance of symbolic analysis. Symbolic
analysis with state merging always generates a
single symbolic state for each synchronous step,
whereas analysis without merging may generate
many symbolic states. As a result, state merging
involves much smaller SMT constraints and fewer
SMT calls than without state merging.

Consider, e.g., “Thermostat” with N = 3 for
B = 2. With state merging, the analysis took 0.6
seconds, where the size of the constraints is around
31, 200 and the number of calls is 218. Without
merging, the analysis took 4, 054.8 seconds, where
the size of the constraints is around 396 million,
and the number of calls is around 2 million.

9.4 Effect of Hybrid PALS

To evaluate the complexity reduction provided
by Hybrid PALS, we compare model checking
of synchronous designs with model checking of
the corresponding asynchronous models. We have
therefore also developed an asynchronous seman-
tics for HybridSynchAADL models (adapted from
the semantics of AADL in [34]). In the experi-
ments, we consider highly simplified distributed
models, where:

• all clocks are perfectly synchronized;
• controller execution takes zero time;
• there is no network delay; and
• sampling/actuating times are chosen from

predefined values nondeterministically.
We measure the execution times for generating

all reachable concrete states up to given bounds
in synchronous designs and asynchronous models,
with a timeout of 6 hours, To generate concrete
states for synchronous designs, we use concrete
sampling and actuating times in a way similar
to randomized simulation, but we choose them
nondeterministically from predefined values.

The results are shown in Table 6, with |Sample|
the number of predefined sampling/actuating
times. As seen, the number of reachable states
can be very large, even for very simple distributed
models. For “Form (single)” with N = 2, B = 1,
and |Sample| = 1, the number of reachable states
is more than 3.8 million. It took more than 2.2
hours to generate these states, whereas model
checking of the synchronous model needed less
than 1 second for the same case.

10 Related Work

Reachability Analysis Tools for CPSs

One distinguishing feature of our work is that
we perform model checking verification of virtu-
ally synchronous CPSs with typical CPS features
such as advanced control programs, continuous be-
haviors, communication delays, execution times,
and clock skews, whereas most formal frame-
works are strong at analyzing either discrete or
continuous behaviors. The latter class includes
reachability analysis tools for (networks of “finite-
location”) hybrid automata such as SpaceEx [42],
HyComp [41], and dReach [44], which do not deal
well with the “discrete complexity” (e.g., complex
control programs) of CPSs. In addition, Hybrid-
SynchAADL can easily specify and analyze both
continuous dynamics and imprecise local clocks.

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 37

Table 4 HybridSynchAADL portfolio analysis (T/O denotes a timeout).

Model N Method
Time (s) / Result

B = 1 B = 2 B = 3 B = 4 B = 5

T
h

er
m

o
st

a
t

2
random T/O / - T/O / - 19.1 / FO 0.04 / FO 0.03 / FO
symbolic 0.2 / NF 0.5 / NF 1.0 / FO 1.0 / FO 1.0 / FO

3
random T/O / - T/O / - T/O / - 5.4 / FO 0.5 / FO
symbolic 0.3 / NF 0.7 / NF 1.6 / NF 3.3 / FO 3.3 / FO

4
random T/O / - T/O / - T/O / - 2.8 / FO 1.6 / FO
symbolic 0.4 / NF 1.0 / NF 2.4 / NF 5.7 / FO 5.7 / FO

W
a
te

r
T

a
n

k

2
random T/O / - T/O / - 73.0 / FO 0.04 / FO 0.03 / FO
symbolic 0.2 / NF 0.4 / NF 0.7 / FO 0.7 / FO 0.7 / FO

3
random T/O / - T/O / - 96.9 / FO 0.1 / FO 0.04 / FO
symbolic 0.3 / NF 0.6 / NF 1.2 / FO 1.2 / FO 1.2 / FO

4
random T/O / - 0.2 / FO 0.1 / FO 0.1 / FO 0.1 / FO
symbolic 0.4 / NF 0.9 / FO 0.9 / FO 0.9 / FO 0.9 / FO

R
en

d
(s

in
g
le

)

2
random T/O / - T/O / - T/O / - 11.2 / FO 0.3 / FO
symbolic 0.6 / NF 2.1 / NF 4.3 / FO 4.3 / FO 4.3 / FO

3
random T/O / - T/O / - 9.7 / FO 0.4 / FO 0.1 / FO
symbolic 0.8 / NF 2.8 / NF 6.1 / FO 6.1 / FO 6.1 / FO

4
random T/O / - 118.8 / FO 0.4 / FO 0.1 / FO 0.1 / FO
symbolic 1.1 / NF 3.9 / FO 3.9 / FO 3.9 / FO 3.9 / FO

F
o
rm

(s
in

g
le

)

2
random T/O / - T/O / - 657.4 / FO 2.4 / FO 1.3 / FO
symbolic 0.8 / NF 2.2 / NF 8.0 / FO 8.0 / FO 8.0 / FO

3
random T/O / - 9.8 / FO 2.7 / FO 1.4 / FO 0.6 / FO
symbolic 1.0 / NF 3.4 / FO 3.4 / FO 3.4 / FO 3.4 / FO

4
random T/O / - T/O / - T/O / - 14.4 / FO 2.6 / FO
symbolic 1.5 / NF 5.6 / NF 23.4 / FO 23.4 / FO 23.4 / FO

R
en

d
(d

o
u

b
le

)

2
random T/O / - 112.6 / FO 0.1 / FO 0.1 / FO 0.1 / FO
symbolic 0.8 / NF T/O / - T/O / - T/O / - T/O / -

3
random T/O / - 118.5 / FO 0.1 / FO 0.1 / FO 0.1 / FO
symbolic 1.3 / NF 4.0 / FO 4.0 / FO 4.0 / FO 4.0 / FO

4
random T/O / - 43.5 / FO 0.1 / FO 0.1 / FO 0.1 / FO
symbolic 1.8 / NF 5.7 / FO 5.7 / FO 5.7 / FO 5.7 / FO

F
o
rm

(d
o
u

b
le

)

2
random T/O / - 33.1 / - 0.8 / FO 0.7 / FO 0.7 / FO
symbolic 1.2 / NF T/O / - T/O / - T/O / - T/O / -

3
random T/O / - 81.4 / FO 1.4 / FO 0.3 / FO 0.2 / FO
symbolic 1.6 / NF 5.7 / FO 5.7 / FO 5.7 / FO 5.7 / FO

4
random T/O / - 2.0 / FO 0.2 / FO 0.2 / FO 0.2 / FO
symbolic 2.3 / NF 10.7 / FO 10.7 / FO 10.6 / FO 10.6 / FO

Springer Nature 2021 LATEX template

38 Formal Analysis of CPSs in AADL

Table 5 Symbolic analysis with merging and without merging (Time in seconds, and |Const| in thousands).

Model N B
Symbolic with merging Symbolic without merging

Time |Const| #Call #State Time |Const| #Call #State

T
h

er
m

o
st

a
t

2

1 0.2 4.3 63 2 0.6 53.3 739 10
2 0.4 18.3 147 3 26.5 3,145.6 20,757 86
3 0.8 44.4 231 4 552.9 54,858.7 225,308 331
4 1.7 82.7 525 5 3,839.6 325,659.1 983,691 1,035

3
1 0.2 7.2 93 2 14.6 13,333.1 15,331 64
2 0.6 31.2 218 3 4,054.8 396,093.6 1,987,483 1,828
3 1.4 79.1 343 4 T/O - - -

4
1 0.3 10.1 123 2 382.9 32,706.3 321,595 442
2 0.9 46.2 289 3 T/O - - -

W
a
te

r
T

a
n

k

2

1 0.2 4.5 55 2 2.7 246.7 2,754 37
2 0.4 17.8 132 3 145.7 18,272.3 101,898 158
3 0.7 40.9 209 4 836.9 111,454.8 435,132 588
4 1.1 74.1 286 5 4,239.9 567,051.3 1,619,352 2,006

3
1 0.2 6.9 82 2 65.9 5,727.3 51,534 217
2 0.6 30.6 197 3 T/O - - -

4
1 0.3 9.2 109 2 1,563.3 123,763.2 939,078 1,297
2 0.9 45.8 262 3 T/O - - -

R
en

d
(s

in
g
le

)

2
1 0.5 38.1 293 2 14.0 1,205.5 9,993 677
2 1.5 133.8 585 3 4,867.7 370,978.8 1,795,183 15,095
3 2.9 299.6 877 4 T/O - - -

3
1 0.7 57.5 438 2 481.5 38,865.8 260,113 17,577
2 2.3 227.2 875 3 T/O - - -

4 1 1.0 76.2 583 2 T/O - - -

F
o
rm

(s
in

g
le

)

2
1 0.7 50.7 328 2 18.1 1,519.9 10,028 677
2 2.1 184.6 655 3 T/O - - -

3
1 1.0 75.6 473 2 617.2 47,029.3 260,148 17,577
2 3.1 302.9 945 3 T/O - - -

4 1 1.3 100.4 618 2 T/O - - -

R
en

d
(d

o
u

b
le

)

2
1 0.7 49.7 293 2 21.1 1,646.5 9,993 677
2 2.2 177.8 585 3 T/O - - -

3
1 1.1 74.5 438 2 731.5 52,137.0 260,113 17,577
2 3.5 301.6 875 3 T/O - - -

4 1 1.4 99.3 583 2 T/O - - -

F
o
rm

(d
o
u

b
le

)

2
1 1.0 67.5 328 2 22.0 1,734.3 9,560 443
2 3.3 250.1 655 3 T/O - - -

3
1 1.5 100.7 473 2 634.2 41,306.8 173,100 11,493
2 5.2 408.8 945 3 T/O - - -

4 1 2.0 133.8 618 2 T/O - - -

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 39

Table 6 Analyzing distributed asynchronous models (Time in seconds, and #State in thousands).

Model N B

Synchronous Models Asynchronous Models

|Sample| = 1 |Sample| = 2 |Sample| = 3 |Sample| = 1 |Sample| = 2 |Sample| = 3

Time #State Time #State Time #State Time #State Time #State Time #State

T
h

er
m

o
st

a
t

2
1 0.01 0.02 0.02 0.1 0.1 0.2 5.3 10.0 55.4 104.9 343.5 564.2
2 0.01 0.03 0.1 0.3 0.9 2.6 6.6 13.0 217.3 471.0 T/O -
3 0.01 0.05 0.7 2.1 30.1 78.0 9.4 19.2 1,368.9 1,799.2 T/O -

3 1 0.01 0.03 0.1 0.2 0.3 0.7 4,424.2 1,812.7 T/O - T/O -

W
a
te

r
T

a
n

k

2
1 0.005 0.01 0.02 0.1 0.1 0.2 5.4 9.9 55.5 101.8 368.7 619.6
2 0.01 0.03 0.4 0.8 5.5 9.6 6.4 12.2 113.6 226.0 8,975.7 4,854.8
3 0.02 0.04 1.5 2.9 109.2 167.9 7.5 14.5 220.1 417.3 T/O -

3 1 0.01 0.02 0.1 0.2 0.7 1.5 4,624.3 1,796.9 T/O - T/O -

R
en

d
(s

in
g
le

)

2
1 0.01 0.03 0.02 0.1 0.1 0.2 6.0 10.7 53.5 90.5 251.4 393.0
2 0.01 0.05 0.2 0.6 1.2 4.1 9.7 19.4 73.1 135.2 317.5 528.8
3 0.02 0.07 2.6 8.9 100.7 297.9 15.0 31.1 107.0 208.1 447.7 769.5

3 1 0.01 0.04 0.1 0.2 0.2 0.5 970.4 939.7 T/O - T/O -

F
o
rm

(s
in

g
le

)

2 1 0.01 0.03 0.05 0.1 0.2 0.3 7,937.9 3,888.4 T/O - T/O -

3 1 0.02 0.05 0.1 0.3 0.5 0.9 T/O - T/O - T/O -

R
en

d
(d

o
u

b
le

) 2
1 0.01 0.02 0.03 0.1 0.1 0.1 145.1 188.2 1,557.6 1,500.6 15,348.1 6,339.2
2 0.02 0.04 0.1 0.2 0.6 8.6 826.3 1,121.8 10,200.0 5,495.6 T/O -
3 0.03 0.07 0.9 1.7 12.9 24.8 2,773.4 2,764.0 T/O - T/O -

3 1 0.01 0.03 0.1 0.1 0.2 0.3 T/O - T/O - T/O -

F
o
rm

(d
o
u

b
le

)

2 1 0.02 0.03 0.1 0.1 0.1 0.1 T/O - T/O - T/O -

3 1 0.03 0.04 0.1 0.2 0.4 0.4 T/O - T/O - T/O -

Hybrid Systems in AADL

The Hybrid Annex for AADL [30] allows model-
ing continuous behaviors in AADL. Its developers
also provide theorem proving support for proving
properties in Hoare Logic combined with Duration
Calculus [46]. Controller behaviors are defined
in Hybrid CSP. Only a “synchronous” subset of
AADL is considered: clock skews, message delays,
and execution times are not taken into account.
In contrast, we use AADL’s expressive Behavior
Annex to specify controller behaviors. Hybrid-
SynchAADL provides automatic model checking
analysis instead of interactive theorem proving.
Moreover, we consider (virtually synchronous)
CPSs—with clock skews, network delays, etc.—
using the Hybrid PALS equivalence.

In [47], an Uncertainty Annex is added to the
Hybrid Annex. Uncertain Hybrid AADL models
can be transformed into networks of priced timed

automata that can then be subjected to statistical
model checking using Uppaal-SMC to evaluate the
performance of the models. Another hybrid annex
is proposed in [31], and an AADL sublanguage,
called AADL+, where continuous behaviors can
be defined using stochastic differential equations,
is given in [48]. Both approaches come with some
kind of operational semantics and simulation, but
with no formal analysis support.

PALS and AADL

Synchronous AADL [33, 49] and its multi-rate ex-
tension [32] support the modeling and analysis
of synchronous PALS models of virtually syn-
chronous distributed real-time systems without
continuous behaviors in AADL. Since the time
when an event takes place can be abstracted away,
there is no need to consider clock skews, and

Springer Nature 2021 LATEX template

40 Formal Analysis of CPSs in AADL

any (sufficiently expressive) explicit-state model
checker, such as Maude, can be used.

In contrast, HybridSynchAADL must model
continuous behaviors and clock skews, and must
analyze all possible behaviors based on when the
continuous components are sampled and actuated,
which depend on the imprecise local clocks. This
required us to leave the explicit-state world and
use Maude with SMT solving. In this way, we
can cover all possible behaviors, but are currently
restricted to reachability analysis.

Formal Analysis of Hybrid PALS Models

The paper [10] shows how synchronous Hybrid
PALS models with simple finite-state machine
controllers—and their reachability problems—can
be encoded as logical formulas and analyzed by
the dReal solver for nonlinear theories over the
real numbers. However, there is no tool support in
[10], and it is difficult to model complex CPSs in
SMT. In contrast, our approach provides a simple
and intuitive way of modeling synchronous Hybrid
PALS models using a well-known modeling stan-
dard. In addition, since we use Maude with SMT
solving instead of just SMT solving, we can also
analyze cyber-physical systems involving complex
control programs and data types.

Almost-Synchronous Systems

Our work is also related to a broader body of work
on modeling and analyzing “almost-synchronous”
systems, including quasi-synchrony [21, 50–52],
GALS [53, 54], virtual synchrony [8, 10, 20],
time-triggered architectures [19, 22], approximate
synchrony [55], etc. A common theme of these
approaches is to simplify the design and verifica-
tion of distributed real-time systems using various
synchronization methods. Our method makes it
possible to model and verify almost-synchronous
systems with continuous behaviors, including of
continuous behaviors perturbed by clock skews, and
sampling/actuation times, which are typically not
considered in related work. We also provide a con-
venient language and modeling environment for
modeling almost-synchronous CPSs.

11 Concluding Remarks

We have presented the HybridSynchAADL mod-
eling language and analysis tool for formally mod-
eling and analyzing the synchronous designs—
and, by the Hybrid PALS equivalence, therefore
also of the corresponding asynchronous distributed
system with bounded clock skews, asynchronous
communication, network delays, and execution
times—of virtually synchronous networks of hy-
brid systems, with potentially complex control
programs, in the well-known modeling standard
AADL. Our tool provides randomized simulation
and symbolic reachability analysis (using Maude
combined with SMT), and is fully integrated into
the OSATE modeling environment for AADL.

We define the formal semantics of the Hybrid-
SynchAADL modeling language, and of our tool’s
analysis commands, using Maude combined with
SMT solving. We have developed and imple-
mented a number of optimization techniques to
improve the performance of the analysis. We
demonstrate the efficiency of our tool on a number
of distributed hybrid systems, including collabo-
rating drones, and show that in most cases our
tool outperforms state-of-the-art hybrid systems
reachability analysis tools.

Limitations and Future Work

HybridSynchAADL’s symbolic analysis is cur-
rently restricted to systems with (nonlinear) poly-
nomial continuous dynamics, because the underly-
ing SMT solver, Yices2, cannot deal with general
classes of ODEs. We should therefore integrate
Maude with ODE solvers such as dReal [35] and
Flow* [43] to analyze systems whose continuous
behaviors are given as (nonlinear) ODEs.

Since a number of CPSs, including the control
system for turning airplanes considered in [3], are
virtually synchronous multi-rate hybrid systems,
we should also extend HybridSynchAADL to the
multi-rate setting, just as PALS and Synchronous
AADL have been extended to the multi-rate case
for systems without continuous behaviors [23, 32].

HybridSynchAADL supports a fairly power-
ful subset of AADL and its Behavior Annex for
specifying discrete controllers, and could easily
specify the applications in this paper. It might
nevertheless be useful to support additional fea-
tures of AADL and its Behavior Annex—such
as subprograms, composite data types, arrays of

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 41

components, and so on—to be able to conveniently
specify even more complex systems. Extending
HybridSynchAADL should be motivated by larger
applications, such as, e.g., the steam-boiler con-
trol benchmark [6], which should be seen as a
distributed cyber-physical system.

Although, as shown in this paper, our tool’s
performance is on par with state-of-the-art formal
tools for hybrid systems, we should continue our
work on improving the efficiency and scalability
of our tool; again, this should be triggered by ad-
vanced applications. In particular, our tool does
not work efficiently for CPSs with nonlinear con-
tinuous dynamics, such as the double-integrator
models in Section 9, since they lead to higher-
order nonlinear constraints that state-of-the-art
SMT solvers, such as Yices2, cannot effectively
deal with.

Like most formal analysis tools for hybrid sys-
tems with non-trivial continuous dynamics [42–
44, 56], HybridSynchAADL supports reachabil-
ity analysis (as well as randomized simulations),
which is a hard problem for such systems. Nev-
ertheless, it would be desirable to support more
expressive formalisms, e.g., based on temporal
logic, for defining system requirements. Signal
temporal logic (STL) [57] is a popular temporal
logic for cyber-physical systems. Supporting STL
model checking of HybridSynchAADL models is
therefore a longterm goal. Some of us have taken
steps towards reaching this goal by developing
efficient STL model checking algorithms that re-
duce an STL bounded model checking problem
to a problem which can be solved using state-of-
the-art SMT solvers [58, 59]. However, that work
targets hybrid automata, and should therefore be
extended/adapted to the expressive HybridSynch-
AADL framework, which also takes clock skews
into account.

Another promising avenue towards reaching
the goal of analyzing temporal logic properties
of HybridSynchAADL models is statistical model
checking (SMC) [60]. SMC verifies a (proba-
bilistic/stochastic) temporal logic property—or
estimates the expected value of a performance
measure—up to the desired level of statistical con-
fidence. SMC is based on analyzing a number
of paths obtained by randomized simulations of
purely probabilistic models (that is, models with
no unquantified nondeterminism). The key point

is that HybridSynchAADL already provides ran-
domized simulations of HybridSynchAADL mod-
els (although these simulation models may not
be purely probabilistic). Furthermore, the par-
allelized statistical model checker PVeStA [61]
can be directly used to analyze Maude models,
and supports the expressive property specifica-
tion formalism QuaTEx [62] which extends various
temporal logics. Therefore, integrating SMC anal-
ysis of HybridSynchAADL models using PVeStA
(or other SMC tools) seems to be a promising
route towards analyzing HybridSynchAADL mod-
els w.r.t. complex temporal logic requirements.
This would require resolving (probabilistically)
the nondeterminism in the control programs.

Acknowledgments. We are grateful to John
Hatcliff and the anonymous reviewers for very
helpful comments on an earlier version of this
paper.

References

[1] Steiner, W., Bauer, G., Hall, B., Paulitsch,
M., Varadarajan, S.: TTEthernet dataflow
concept. In: 2009 Eighth IEEE International
Symposium on Network Computing and Ap-
plications, pp. 319–322 (2009). IEEE

[2] Leen, G., Heffernan, D., Dunne, A.: Digital
networks in the automotive vehicle. Comput-
ing & Control Engineering Journal 10(6),
257–266 (1999)

[3] Bae, K., Krisiloff, J., Meseguer, J., Ölveczky,
P.C.: Designing and verifying distributed
cyber-physical systems using Multirate
PALS: An airplane turning control sys-
tem case study. Science of Computer
Programming 103, 13–50 (2015)

[4] Arney, D., Jetley, R., Jones, P., Lee, I., Sokol-
sky, O.: Formal methods based development
of a PCA infusion pump reference model:
Generic infusion pump (GIP) project. In:
HCMDSS-MDPnP, pp. 23–33 (2007). IEEE

[5] Kim, C., Sun, M., Mohan, S., Yun, H., Sha,
L., Abdelzaher, T.F.: A framework for the
safe interoperability of medical devices in the
presence of network failures. In: ICCPS, pp.
149–158 (2010)

Springer Nature 2021 LATEX template

42 Formal Analysis of CPSs in AADL

[6] Abrial, J., Börger, E., Langmaack, H. (eds.):
Formal Methods for Industrial Applications:
Specifying and Programming the Steam
Boiler Control. LNCS, vol. 1165. Springer,
Berlin, Heidelberg (1996)

[7] Al-Nayeem, A., Sun, M., Qiu, X., Sha, L.,
Miller, S.P., Cofer, D.D.: A formal architec-
ture pattern for real-time distributed sys-
tems. In: Proc. RTSS, pp. 161–170. IEEE,
USA (2009)

[8] Miller, S., Cofer, D., Sha, L., Meseguer, J.,
Al-Nayeem, A.: Implementing logical syn-
chrony in integrated modular avionics. In:
Proc. IEEE/AIAA 28th Digital Avionics Sys-
tems Conference. IEEE, USA (2009)

[9] Meseguer, J., Ölveczky, P.C.: Formalization
and correctness of the PALS architectural
pattern for distributed real-time systems.
Theoretical Computer Science 451, 1–37
(2012)

[10] Bae, K., Ölveczky, P.C., Kong, S., Gao, S.,
Clarke, E.M.: SMT-based analysis of virtu-
ally synchronous distributed hybrid systems.
In: Proc. HSCC, pp. 145–154. ACM, New
York, NY, USA (2016)

[11] Feiler, P.H., Gluch, D.P.: Model-Based En-
gineering with AADL: An Introduction to
the SAE Architecture Analysis and Design
Language. Addison-Wesley, USA (2012)

[12] França, R.B., Bodeveix, J.-P., Filali, M., Rol-
land, J.-F., Chemouil, D., Thomas, D.: The
AADL Behaviour Annex - experiments and
roadmap. In: Proc. ICECCS’07. IEEE, USA
(2007)

[13] Clavel, M., Durán, F., Eker, S., Meseguer, J.,
Lincoln, P., Mart́ı-Oliet, N., Talcott, C.: All
About Maude – A High-Performance Logical
Framework. Lecture Notes in Computer Sci-
ence, vol. 4350. Springer, Berlin, Heidelberg
(2007)

[14] Rocha, C., Meseguer, J., Muñoz, C.: Rewrit-
ing modulo SMT and open system analysis.
Journal of Logical and Algebraic Methods in
Programming 86(1), 269–297 (2017)

[15] Bae, K., Rocha, C.: Symbolic state space
reduction with guarded terms for rewriting
modulo SMT. Science of Computer Program-
ming 178, 20–42 (2019)

[16] Baldoni, R., Coppa, E., D’Elia, D.C., Deme-
trescu, C., Finocchi, I.: A survey of symbolic
execution techniques. ACM Computing Sur-
veys (CSUR) 51(3), 1–39 (2018)

[17] Dutertre, B.: Yices 2.2. In: Proc. CAV.
LNCS, vol. 8559, pp. 737–744. Springer,
Berlin, Heidelberg (2014)

[18] Lee, J., Kim, S., Bae, K., Ölveczky, P.C.: Hy-
bridSynchAADL: Modeling and formal anal-
ysis of virtually synchronous CPSs in AADL.
In: Proc. CAV’21. LNCS, vol. 12759, pp.
491–504. Springer, Berlin, Heidelberg (2021)

[19] Rushby, J.: Systematic formal verification
for fault-tolerant time-triggered algorithms.
IEEE Transactions on Software Engineering
25(5), 651–660 (1999)

[20] Bae, K., Ölveczky, P.C.: MSYNC: A general-
ized formal design pattern for virtually syn-
chronous multirate cyber-physical systems.
ACM Trans. Embedd. Comput. Syst. (Proc.
EMSOFT’21) 20(5s,Article 105) (2021)

[21] Caspi, P., Mazuet, C., Paligot, N.R.: About
the design of distributed control systems:
The quasi-synchronous approach. In: Inter-
national Conference on Computer Safety,
Reliability, and Security (2001). Springer

[22] Tripakis, S., Pinello, C., Benveniste, A.,
Sangiovanni-Vincent, A., Caspi, P., Di Na-
tale, M.: Implementing synchronous models
on loosely time triggered architectures. IEEE
Transactions on Computers 57(10), 1300–
1314 (2008)

[23] Bae, K., Meseguer, J., Ölveczky, P.C.: Formal
patterns for multirate distributed real-time
systems. Science of Computer Programming
91, 3–44 (2014)

[24] Steiner, W., Rushby, J.: TTA and PALS: For-
mally verified design patterns for distributed
cyber-physical systems. In: 2011 IEEE/AIAA

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 43

30th Digital Avionics Systems Conference,
pp. 7–51 (2011). IEEE

[25] Skeirik, S., Stefanescu, A., Meseguer, J.:
A constructor-based reachability logic for
rewrite theories. Fundamenta Informaticae
173(4), 315–382 (2020)

[26] Clavel, M., Durán, F., Eker, S., Esco-
bar, S., Lincoln, P., Martı-Oliet, N.,
Meseguer, J., Rubio, R., Talcott, C.: Maude
manual (version 3.1). Technical report,
SRI International, Menlo Park (2020).
http://maude.cs.illinois.edu/w/index.php/
Maude Manual and Examples

[27] Meseguer, J.: Conditional rewriting logic as
a unified model of concurrency. Theoretical
Computer Science 96(1), 73–155 (1992)

[28] Barrett, C., Conway, C.L., Deters, M.,
Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: CAV, pp.
171–177 (2011). Springer

[29] Barrett, C., Stump, A., Tinelli, C., et al.: The
SMT-LIB standard: Version 2.0. In: SMT,
vol. 13, p. 14 (2010)

[30] Ahmad, E., Larson, B.R., Barrett, S.C.,
Zhan, N., Dong, Y.: Hybrid Annex: an AADL
extension for continuous behavior and cyber-
physical interaction modeling. In: Proc. ACM
SIGAda Annual Conference on High Integrity
Language Technology (HILT’14). ACM, New
York, NY, USA (2014)

[31] Qian, Y., Liu, J., Chen, X.: Hybrid AADL:
a sublanguage extension to AADL. In: Proc.
Internetware’13. ACM, New York, NY, USA
(2013)

[32] Bae, K., Ölveczky, P.C., Meseguer, J.: Def-
inition, semantics, and analysis of Multirate
Synchronous AADL. In: Proc. FM’14. LNCS,
vol. 8442. Springer, Berlin, Heidelberg (2014)

[33] Bae, K., Ölveczky, P.C., Al-Nayeem, A.,
Meseguer, J.: Synchronous AADL and its
formal analysis in Real-Time Maude. In:
Proc. ICFEM’11. LNCS, vol. 6991. Springer,
Berlin, Heidelberg (2011)

[34] Ölveczky, P.C., Boronat, A., Meseguer, J.:
Formal semantics and analysis of behavioral
AADL models in Real-Time Maude. In: For-
mal Techniques for Distributed Systems, pp.
47–62. Springer, Berlin, Heidelberg (2010)

[35] Gao, S., Kong, S., Clarke, E.M.: dReal: An
SMT solver for nonlinear theories over the
reals. In: Proc. CADE. Lecture Notes in
Computer Science, vol. 7898, pp. 208–214.
Springer, Berlin, Heidelberg (2013)

[36] Ren, W., Beard, R.W.: Distributed Con-
sensus in Multi-vehicle Cooperative Control.
Springer, Berlin, Heidelberg (2008)

[37] Henzinger, T.: The theory of hybrid au-
tomata. In: Verification of Digital and Hybrid
Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Berlin, Heidelberg (2000)

[38] Bae, K., Gao, S.: Modular SMT-based anal-
ysis of nonlinear hybrid systems. In: Proc.
FMCAD, pp. 180–187. IEEE, USA (2017)

[39] Raisch, J., Klein, E., Meder, C., Itigin, A.,
O’Young, S.: Approximating automata and
discrete control for continuous systems — two
examples from process control. In: Hybrid
Systems V, pp. 279–303. Springer, Berlin,
Heidelberg (1999)

[40] Yu, G., Bae, K.: Maude-SE: a tight inte-
gration of Maude and SMT solvers. Proc.
International Workshop on Rewriting Logic
and its Applications (2020)

[41] Cimatti, A., Griggio, A., Mover, S., Tonetta,
S.: HyComp: An SMT-based model checker
for hybrid systems. In: Proc. TACAS. LNCS,
vol. 9035. Springer, Berlin, Heidelberg (2015)

[42] Frehse, G., Guernic, C.L., Donzé, A., Cotton,
S., Ray, R., Lebeltel, O., Ripado, R., Girard,
A., Dang, T., Maler, O.: SpaceEx: Scalable
verification of hybrid systems. In: Proc. CAV.
LNCS, vol. 6806. Springer, Berlin, Heidelberg
(2011)

[43] Chen, X., Ábrahám, E., Sankaranarayanan,
S.: Flow*: An analyzer for non-linear hybrid
systems. In: Proc. CAV, pp. 258–263 (2013).

http://maude.cs.illinois.edu/w/index.php/Maude_Manual_and_Examples
http://maude.cs.illinois.edu/w/index.php/Maude_Manual_and_Examples

Springer Nature 2021 LATEX template

44 Formal Analysis of CPSs in AADL

Springer

[44] Kong, S., Gao, S., Chen, W., Clarke, E.M.:
dReach: δ-reachability analysis for hybrid
systems. In: Proc. TACAS. Lecture Notes in
Computer Science, vol. 7898, pp. 200–205.
Springer, Berlin, Heidelberg (2015)

[45] Bak, S., Bogomolov, S., Johnson, T.T.:
HYST: a source transformation and transla-
tion tool for hybrid automaton models. In:
Proc. HSCC’15, pp. 128–133 (2015)

[46] Ahmad, E., Dong, Y., Wang, S., Zhan, N.,
Zou, L.: Adding formal meanings to AADL
with Hybrid Annex. In: Proc. FACS. LNCS,
vol. 8997. Springer, Berlin, Heidelberg (2015)

[47] Bao, Y., Chen, M., Zhu, Q., Wei, T.,
Mallet, F., Zhou, T.: Quantitative perfor-
mance evaluation of uncertainty-aware Hy-
brid AADL designs using statistical model
checking. IEEE Transactions on CAD of In-
tegrated Circuits and Systems 36(12), 1989–
2002 (2017)

[48] Liu, J., Li, T., Ding, Z., Qian, Y., Sun, H.,
He, J.: AADL+: a simulation-based method-
ology for cyber-physical systems. Frontiers
Comput. Sci. 13(3), 516–538 (2019)

[49] Bae, K., Ölveczky, P.C., Meseguer, J.,
Al-Nayeem, A.: The SynchAADL2Maude
tool. In: Proc. FASE’12. LNCS, vol. 7212.
Springer, Berlin, Heidelberg (2012)

[50] Baudart, G., Bourke, T., Pouzet, M.: Sound-
ness of the quasi-synchronous abstraction. In:
Proc. FMCAD, pp. 9–16 (2016). IEEE

[51] Larrieu, R., Shankar, N.: A framework for
high-assurance quasi-synchronous systems.
In: 2014 Twelfth ACM/IEEE Conference on
Formal Methods and Models for Codesign
(MEMOCODE), pp. 72–83 (2014). IEEE

[52] Halbwachs, N., Mandel, L.: Simulation and
verification of asynchronous systems by
means of a synchronous model. In: Sixth
International Conference on Application of
Concurrency to System Design (ACSD’06),
pp. 3–14 (2006). IEEE

[53] Girault, A., Ménier, C.: Automatic produc-
tion of globally asynchronous locally syn-
chronous systems. In: International Work-
shop on Embedded Software, pp. 266–281
(2002). Springer

[54] Potop-Butucaru, D., Caillaud, B.: Correct-
by-construction asynchronous implementa-
tion of modular synchronous specifications.
Fundamenta Informaticae 78(1), 131–159
(2007)

[55] Desai, A., Seshia, S.A., Qadeer, S., Broman,
D., Eidson, J.C.: Approximate synchrony:
An abstraction for distributed almost-
synchronous systems. In: Proc. CAV’15.
LNCS, vol. 9207, pp. 429–448. Springer,
Berlin, Heidelberg (2015)

[56] Bak, S., Duggirala, P.S.: Hylaa: A tool for
computing simulation-equivalent reachability
for linear systems. In: Proc. HSCC, pp. 173–
178 (2017)

[57] Maler, O., Nickovic, D.: Monitoring temporal
properties of continuous signals. In: Formal
Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Lecture Notes
in Computer Science, vol. 3253, pp. 152–166.
Springer, Berlin, Heidelberg (2004)

[58] Bae, K., Lee, J.: Bounded model checking of
signal temporal logic properties using syntac-
tic separation. In: Proc. POPL 2019 (2019)

[59] Lee, J., Yu, G., Bae, K.: Efficient SMT-based
model checking for signal temporal logic. In:
Proc. 36th IEEE/ACM International Con-
ference on Automated Software Engineering
(ASE’21), pp. 343–354 (2021). IEEE

[60] Agha, G., Palmskog, K.: A survey of sta-
tistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6–1639 (2018)

[61] AlTurki, M., Meseguer, J.: PVeStA: A paral-
lel statistical model checking and quantitative
analysis tool. In: Proc. CALCO 2011. Lecture
Notes in Computer Science, vol. 6859, pp.
386–392. Springer, Berlin, Heidelberg (2011)

[62] Agha, G.A., Meseguer, J., Sen, K.: PMaude:

Springer Nature 2021 LATEX template

Formal Analysis of CPSs in AADL 45

Rewrite-based specification language for
probabilistic object systems. Electronic Notes
in Theoretical Computer Science 153(2),
213–239 (2006)

	Introduction
	Preliminaries
	Hybrid PALS
	AADL
	Maude with SMT
	Rewriting Logic and Maude
	Rewriting Modulo SMT

	The HybridSynchAADL Modeling Language
	Controller Components
	Environment Components
	Communication
	An Example

	Maude Representation of HybridSynchAADL Models
	Components
	Ports and Connections
	Constrained Objects
	An Example

	Symbolic Semantics of Discrete Controllers
	Ensemble Behavior
	Transferring Data

	Thread Behavior
	Port and Data Operations
	Executing Transitions
	Evaluating Expressions
	Executing Actions

	Symbolic Semantics of Continuous Environments
	Environment Behavior
	Environment Port Operations
	Executing Environments
	Continuous Transitions
	Environment Sampling
	Environment Actuation

	Formal Analysis using the HybridSynchAADL Tool
	Specifying Properties
	Semantics
	Example

	Merging Symbolic States
	The HybridSynchAADL Tool
	Testing the Implementation

	Case Study: Collaborating Autonomous Drones
	Distributed Consensus of Drones
	The HybridSynchAADL Model
	Formal Analysis

	Experimental Evaluation
	Comparing with Other Tools
	Fairness of the Comparison

	Effect of Portfolio Analysis
	Effect of State Merging
	Effect of Hybrid PALS

	Related Work
	Reachability Analysis Tools for CPSs
	Hybrid Systems in AADL
	PALS and AADL
	Formal Analysis of Hybrid PALS Models
	Almost-Synchronous Systems

	Concluding Remarks
	Limitations and Future Work
	Acknowledgments

