
HybridSynchAADL: Modeling and Formal
Analysis of Virtually Synchronous CPSs in AADL

Jaehun Lee1, Sharon Kim1, Kyungmin Bae1, and Peter Csaba Ölveczky2

1 Pohang University of Science and Technology
2 University of Oslo

Abstract. We present the HybridSynchAADL modeling language and
formal analysis tool for virtually synchronous cyber-physical systems
with complex control programs, continuous behaviors, and bounded clock
skews, network delays, and execution times. We leverage the Hybrid
PALS equivalence, so that it is sufficient to model and verify the simpler
underlying synchronous designs. We define the HybridSynchAADL
language as a sublanguage of the avionics modeling standard AADL
for modeling such designs in AADL. HybridSynchAADL models are
given a formal semantics and analyzed using Maude with SMT solving,
which allows us to represent advanced control programs and commu-
nication features in Maude, while capturing timing uncertainties and
continuous behaviors symbolically with SMT solving. We demonstrate
the effectiveness of HybridSynchAADL on a number of applications,
including autonomous drones that collaborate to achieve common goals.

1 Introduction

Many cyber-physical systems (CPSs) are virtually synchronous. They should
logically behave as if they were synchronous—in each iteration of the system,
all components, in lockstep, read inputs and perform transitions which generate
outputs for the next iteration—but have to be realized in a distributed setting,
with clock skews and message passing communication. Examples of virtually
synchronous CPSs include avionics and automotive systems, networked medical
devices, and distributed control systems such as the steam-boiler benchmark [2].
The underlying infrastructure of such critical systems often guarantees bounds
on clock skews, network delays, and execution times.

Virtually synchronous CPSs are notoriously hard to design and to model
check, because of the state space explosion caused by asynchronous communi-
cation. Motivated by an avionics application developed at Rockwell Collins, the
PALS (“physically asynchronous, logically synchronous”) formal pattern reduces
the difficulty of modeling and verifying distributed real-time systems when the
infrastructure provides bounds on network delays, clock skews, and execution
times [5, 38, 39]: A synchronous design SD—where all components execute in
lockstep and there is no asynchronous message passing, clock skews, or execu-
tion times—is stuttering bisimilar to, and therefore satisfies the same properties
as, the corresponding asynchronous distributed “implementation” PALS (SD).

2

PALS abstracts from the time when an event occurs, as long as it happens in a
certain time interval. However, many virtually synchronous CPSs are networks
of hybrid systems with continuous behaviors, where we cannot abstract from
the time when a controller interacts with its continuous environment. Hybrid
PALS [10] extends PALS to virtually synchronous distributed hybrid systems,
taking into account sensing and actuating times that depend on imprecise local
clocks. Although synchronous Hybrid PALS models can be encoded as SMT
problems [10], it is difficult to encode complex virtually synchronous CPSs—with
advanced control programs, data types, hierarchical structure, etc.—in SMT.

This paper therefore defines the HybridSynchAADL language for conve-
niently modeling virtually synchronous distributed hybrid systems using the
avionics modeling standard AADL [26] (Section 3). Providing a formal semantics
to such models—with control programs written in AADL’s expressive Behavior
Annex, having to cover all possible continuous behaviors based on imprecise
clocks—is challenging. We use Maude [23] combined with SMT solving [14, 45]
to symbolically encode all possible continuous behaviors with all possible sensing
and actuating times depending on imprecise clocks, and provide in Section 6 a
Maude-with-SMT semantics for HybridSynchAADL.

Section 4 presents the HybridSynchAADL tool supporting the modeling
and verification of HybridSynchAADL models inside the OSATE tool envi-
ronment for AADL. Our tool provides an intuitive property specification lan-
guage for specifying bounded reachability properties of HybridSynchAADL
models. HybridSynchAADL invokes Maude combined with the SMT solver
Yices2 [25] to provide symbolic reachability analysis and randomized simula-
tion for verifying such bounded reachability properties of HybridSynchAADL
models with polynomial continuous dynamics. To make this analysis efficient,
our tool implements several optimization techniques, including symbolic state
merging, modular symbolic encoding, and multithreaded portfolio analysis.

We use our tool to model and verify a number of CPS applications, including
networks of thermostats and of water tanks, as well as distributed drones that
communicate to reach the “same” location, or fly in formation, without crashing
into each other (Section 5). We evaluate, and demonstrate, the effectiveness of
the HybridSynchAADL tool by addressing the following questions (Section 7):

1. How effective is our tool compared to state-of-the-art CPS analysis tools?
2. How effective is our method and tool in finding bugs?
3. How effective is our new state merging technique?
4. How effective is Hybrid PALS in verifying virtually synchronous CPSs with

continuous behaviors?

HybridSynchAADL is one of few, if any, tools—certainly in an AADL
context—that can formally analyze the important class of virtually synchronous
CPSs with typical CPS features such as complex control programs, continuous
behaviors, and arbitrary but bounded communication delays, clock skews, and
execution times. This is made possible by:

3

1. Hybrid PALS, which reduces the formal analysis of a virtually synchronous
CPS to that of its synchronous design—albeit having to consider clock skews
and sensing and actuation times; and

2. the integration of Maude with SMT solving. Maude is suitable to analyze
complex control programs, whereas SMT solving allows us to symbolically
analyze continuous behaviors.

HybridSynchAADL combines these techniques to provide an expressive and
user-friendly formal modeling and analysis framework for virtually synchronous
CPSs that is optimized to make formal analysis feasible. The HybridSynch-
AADL tool is available at https://hybridsynchaadl.github.io.

The rest of this paper is organized as follows. Section 2 explains some back-
ground on Hybrid PALS, AADL, and Maude with SMT. Section 3 presents the
HybridSynchAADL language. Section 4 presents the HybridSynchAADL
tool. Section 5 presents case studies on virtually synchronous CPSs for control-
ling distributed drones. Section 6 presents its semantics in Maude with SMT.
Section 7 shows the experimental results. Section 8 discusses the related work.
Finally, Section 9 presents some concluding remarks.

2 Preliminaries

2.1 PALS and Hybrid PALS

When the infrastructure guarantees bounds on clock skews, network delays, and
execution times, the PALS pattern [5,38] reduces the problems of designing and
verifying virtually synchronous distributed real-time systems to the much easier
problems of designing and verifying their underlying synchronous designs. For-
mally, given a synchronous system design SD , bounds Γ on clock skews, network
delays, and execution times, and a period p of each round, the PALS transfor-
mation gives us the asynchronous distributed real-time system PALS (SD , Γ, p),
which is stuttering bisimilar to SD .

The synchronous design SD is formalized as the synchronous composition of
an ensemble of state machines with input and output ports [38]. In each iteration
(i.e., at the beginning of each “period”), each machine performs a transition based
on its current state and its inputs, proceeds to the next state, and generates
outputs. All machines perform their transitions simultaneously, and outputs to
other machines become inputs at the next iteration. PALS was extended to the
multi-rate setting in [7], but, for simplicity of exposition, this paper focuses on
the single-rate case.

Hybrid PALS [10] extends PALS to virtually synchronous CPSs with physical
environments that exhibit continuous behaviors. The physical environment EM
of a machine M has real-valued parameters ~x = (x1, . . . , xl). The continuous
behaviors of ~x are modeled by a set of ordinary differential equations (ODEs)
that specify different trajectories on ~x. EM also defines which trajectory the
environment follows, as a function of the last control command received by EM .

https://hybridsynchaadl.github.io

4

The local clock of a machine M can be seen as a function cM : R≥0 → R≥0,
where cM (t) is the value of the local clock at time t, with ∀t ∈ R≥0, |cM (t)−t| < ε
for ε > 0 the maximal clock skew [38]. In its ith iteration, a controllerM samples
the values of its environment at time cM (i ·p)+ ts, where ts is the sampling time,
and then executes a transition (based on the sampled values, the values received
from other controllers, and the controller’s own state). As a result, the new
control command is received by the environment at time cM (i · p)+ ta, where ta
is the actuating time.

2.2 AADL

The Architecture Analysis & Design Language (AADL) [26] is an industrial mod-
eling standard used in avionics, aerospace, automotive, medical devices, and
robotics to describe an embedded real-time system as an assembly of software
components mapped onto an execution platform. In AADL, a component type
specifies the component’s interface (e.g., ports) and properties (e.g., periods),
and a component implementation specifies its internal structure as a set of sub-
components and a set of connections linking their ports. An AADL construct
may have properties describing its parameters, declared in property sets. The
OSATE modeling environment provides a set of Eclipse plug-ins for AADL.

An AADL model describes a system of hardware and software components.
This paper focuses on the software components, since we use AADL to specify
synchronous designs.3 Software components include threads that model the ap-
plication software to be executed; process components defining protected mem-
ory that can be accessed by its thread and data subcomponents; and data compo-
nents representing data types. System components are the top-level components.

A port is either a data port, an event port, or an event data port. Event ports
and event data ports support queuing of, respectively, “events” and message data,
while data ports only keep the latest data. Modes represent the operational
states of components. A component can have mode-specific property values,
subcomponents, etc. Mode transitions are triggered by events.

Thread behavior is modeled as a guarded transition system with local vari-
ables using AADL’s Behavior Annex [27]. The actions performed when a tran-
sition is applied may update local variables, call methods, and/or generate new
outputs. Actions are built from basic actions using sequencing, conditionals, and
finite loops. When a thread is activated, transitions are applied; if the result-
ing state is not a complete state, another transition is applied, until a complete
state is reached. The dispatch protocol of a thread determines when a thread is
executed. In particular, a periodic thread is activated at fixed time intervals.

3 Hardware components include: processor components that schedule and execute
threads, memory components, device components, and bus components that inter-
connect processors, memory, and devices.

5

2.3 Maude with SMT

Maude [23] is a language and tool for formally specifying and analyzing con-
current systems in rewriting logic. System states are specified as elements of
algebraic data types, and transitions are specified using rewrite rules. A rewrite
theory [37] is a triple R = (Σ,E,R), where (Σ,E) is an equational theory with
Σ a signature (declaring sorts, subsorts, and function symbols) and E a set of
equations; and R is a set of rewrite rules l : t −→ t′ if cond , where l is a label, t
and t′ are terms, and cond is a conjunction of equations and rewrites. A rewrite
t −→∗ t′ holds if t′ is reachable from t using the rewrite rules in R.

A declaration class C | att1 : s1, . . . , attn : sn declares a class C with at-
tributes att1, . . . , attn of sorts s1, . . . , sn. An object o of class C is a term

< o : C | att1 : v1, . . . , attn : vn >,

of sort Object, where vi is the value of the attribute att i. A subclass inherits the
attributes and rewrite rules of its superclasses. A configuration is a multiset of
objects and messages, and has sort Configuration, with multiset union denoted
by juxtaposition.

In rewriting modulo SMT [14, 45], (possibly infinite) sets of system states
can be symbolically represented using constrained terms. A constrained term is
a pair φ ‖ t of a constraint φ(x1, . . . , xn) and a term t(x1, . . . , xn) over SMT
variables x1, . . . , xn, representing all instances of t such that φ holds: i.e., given
the underlying SMT theory T , we have:

Jφ ‖ tK = {t(a1, . . . , an) | T |= φ(a1, . . . , an)}.

A symbolic rewrite φt ‖ t ∗ φu ‖ u on constrained terms symbolically
represents a (possibly infinite) set of system transitions sequences. For a symbolic
rewrite φt ‖ t ∗ φu ‖ u, there is a “concrete” rewrite t′ −→∗ u′ with t′ ∈ Jφt ‖ tK
and u′ ∈ Jφu ‖ uK, and vice versa for each t′ −→∗ u′ with t′ ∈ Jφt ‖ tK.

In addition to its explicit-state analysis methods for concrete states (ground
terms), Maude provides SMT solving and symbolic reachability analysis for con-
strained terms, using connections to Yices2 [25] and CVC4 [18].

3 The HybridSynchAADL Modeling Language

This section presents the HybridSynchAADL language for modeling virtually
synchronous CPSs in AADL. HybridSynchAADL can specify environments
with continuous dynamics, synchronous designs of distributed controllers, and
nontrivial interactions between controllers and environments with respect to
imprecise local clocks and sampling and actuation times.

The HybridSynchAADL language is a subset of AADL extended with the
following property set Hybrid_SynchAADL. We use a subset of AADL without
changing the meaning of AADL constructs or adding new a annex—the subset
has the same meaning for synchronous models and asynchronous distributed
implementations—so that AADL experts can easily develop and understand
HybridSynchAADL models.

6

property set Hybrid_SynchAADL is
Synchronous: inherit aadlboolean applies to (system);
isEnvironment: inherit aadlboolean applies to (system);
ContinuousDynamics: aadlstring applies to (system);
Max_Clock_Deviation: inherit Time applies to (system);
Sampling_Time: inherit Time_Range applies to (system);
Response_Time: inherit Time_Range applies to (system);

end Hybrid_SynchAADL;

There are two kinds of components in HybridSynchAADL: continuous en-
vironments and discrete controllers. Environments are specified as system com-
ponents whose continuous dynamics is specified using continuous functions or
ordinary differential equations. Discrete controllers are usual AADL software
components in the Synchronous AADL subset [8, 11] of AADL.4 The top-level
system component declares the following properties to state that the model is a
synchronous design and to declare the period of the system, respectively.

Hybrid_SynchAADL::Synchronous => true;
Period => period;

Example 1. We use a simple networked thermostat system as a running example.
There are two thermostats that control the temperatures of two rooms located
in different places. The goal is to maintain similar temperatures in both rooms.
For this purpose, the controllers communicate with each other over a network,
and turn the heaters on or off, based on the current temperature of the room
and the temperature of the other room. Figure 1 shows the architecture of this
networked thermostat system. For room i, for i = 1, 2, the controller ctrli
controls its environment envi (using “connections” explained below).

env1
setPower1

turnOn1

turnOff2

ctrl1getTemp1

send1

send2

env2ctrl2
setPower2

turnOn2

turnOff2

getTemp2

Fig. 1. A networked thermostat system.

4 Just like Synchronous AADL can be extended to multi-rate controllers [11], it is
possible to extend HybridSynchAADL to the multi-rate case in the same way, but
for clarity and ease of exposition we focus on the single-rate case in this paper.

7

3.1 Environment Components

An environment component models real-valued state variables that continuously
change over time. State variables are specified using data subcomponents of
type Base_Types::Float. Each environment component declares the property
Hybrid_SynchAADL::isEnvironment => true.

An environment component can have different modes to specify different
continuous behaviors (trajectories). A controller command may change the mode
of the environment or the value of a variable. The continuous dynamics in each
mode is specified using either ODEs or continuous real functions as follows:

Hybrid_SynchAADL::ContinuousDynamics =>
"dynamics1" in modes (mode1), . . ., "dynamicsn" in modes (moden);

In HybridSynchAADL, a set of ODEs over n variables x1, . . . , xn, say,
dxi

dt = ei(x1, . . . , xn) for i = 1, . . . , n, is written as a semicolon-separated string:

d/dt(x1) = e1(x1, . . . , xn); . . . ; d/dt(xn) = en(x1, . . . , xn);

If a closed-form solution of ODEs is known, we can directly specify concrete
continuous functions, which are parameterized by a time parameter t and the
initial values x1(0), . . . , xn(0) of the variables x1, . . . , xn:

x1(t) = e1(t, x1(0), . . . , xn(0)); . . . ; xn(t) = en(t, x1(0), . . . , xn(0));

Sometimes an environment component may include real-valued parameters
or state variables that have the same constant values in each iteration, and can
only be changed by a controller command; their dynamics can be specified as
d/dt(x) = 0 or x(t) = x(0), and can be omitted in HybridSynchAADL.

An environment component interacts with discrete controllers by sending its
state values, and by receiving actuator commands that may update the values
of state variables or trigger mode (and hence trajectory) changes. This behavior
is specified in HybridSynchAADL using connections between ports and data
subcomponents. A connection from a data subcomponent inside the environment
to an output data port of an environment component declares that the value of
the data subcomponent is “sampled” by a controller through the output port of
the environment component. A connection from an environment’s input port to a
data subcomponent inside the environment declares that a controller command
arrived at the input port and updates the value of the data subcomponent.
When a discrete controller sends actuator commands, some input ports of the
environment component may receive no value (more precisely, some “don’t care”
value ⊥). In this case, the behavior of the environment is unchanged.

Example 2. Figure 3 gives an environment component RoomEnv for our networked
thermostat system. Figure 2 shows its architecture. It has data output port temp,
data input port power, and event input ports on_control and off_control. The
implementation of RoomEnv has two data subcomponents x and p to denote the
temperature of the room and the heater’s power, respectively. They represent
the state variables of RoomEnv with the specified initial values.

8

There are two modes heaterOn and heaterOff with their respective continu-
ous dynamics, specified by Hybrid_SynchAADL::ContinuousDynamics, using con-
tinuous functions over time parameter t, where heaterOff is the initial mode. Be-
cause p is a constant, p’s dynamics d/dt(p) = 0 is omitted. The value x changes
continuously according to the mode and the continuous dynamics.

The value of x is sent to the controller through the output port temp, declared
by the connection port x -> temp. When a discrete controller sends an actuation
command through input ports power, on_control, and off_control, the mode
changes according to the mode transitions, and the value of p can be updated
by the value of input port power, declared by the connection port x -> temp.

RoomEnv.impl

temppower

on_control

off_control

xp

heaterOn

heaterOff

x(t) = x(0) - 0.1 * (x(0) - p / 0.1) * t

x(t) = x(0) * (1 - 0.1 * t)

Fig. 2. An environment of the thermostat controller.

system RoomEnv
features

temp: out data port Base_Types::Float;
power: in data port Base_Types::Float;
on_control: in event port; off_control: in event port;

properties
Hybrid_SynchAADL::isEnvironment => true;

end RoomEnv;

system implementation RoomEnv.impl
subcomponents

x: data Base_Types::Float {Data_Model::Initial_Value => ("15");};
p: data Base_Types::Float {Data_Model::Initial_Value => ("5");};

connections
C: port x -> temp; R: port power -> p;

modes
heaterOff: initial mode; heaterOn: mode;
heaterOff -[on_control]-> heaterOn; heaterOn -[off_control]-> heaterOff;

properties
Hybrid_SynchAADL::ContinuousDynamics =>

"x(t) = x(0) - 0.1 * (x(0) - p / 0.1) * t;" in modes (heaterOn),
"x(t) = x(0) * (1 - 0.1 * t);" in modes (heaterOff);

end RoomEnv.impl;

Fig. 3. A RoomEnv component.

9

3.2 Controller Components

Discrete controllers are usual AADL software components in the Synchronous
AADL subset [9, 12]. A controller component is specified using the behavioral
and structural subset of AADL: hierarchical system, process, thread components,
data subcomponents; ports and connections; and thread behaviors defined by the
Behavior Annex [27]. The hardware and scheduling features of AADL, which are
not relevant to synchronous designs, are not considered in HybridSynchAADL.

Dispatch. The execution of an AADL thread is specified by the dispatch protocol.
A thread with an event-triggered dispatch (such as aperiodic, sporadic, timed,
or hybrid dispatch protocols) is dispatched when it receives an event. Since
all “controller” components are executed in lock-step in HybridSynchAADL,
each thread must have periodic dispatch by which the thread is dispatched at
the beginning of each period. The periods of all the threads are identical to the
period declared in the top-level component. In AADL, this behavior is declared
by the thread component property:

Dispatch_Protocol => Periodic;

Timing Properties. A controller receives the state of the environment at some
sampling time, and sends a controller command to the environment at some
actuation time. Sampling and actuation take place according to the local clock
of the controller, which may differ from the “ideal clock” by up to the maximal
clock skew. These time values are declared by the component properties:

Hybrid_SynchAADL::Max_Clock_Deviation => time;
Hybrid_SynchAADL::Sampling_Time => lower bound .. upper bound;
Hybrid_SynchAADL::Response_Time => lower bound .. upper bound;

The upper sampling time bound must be strictly smaller than the upper bound
of actuation time, and the lower bound of actuation time must be strictly greater
than the lower bound of sampling time. Also, the upper bounds of both sampling
and actuating times must be strictly smaller than the maximal execution time
to meet the (Hybrid) PALS constraints [10].

Initial Values and Parameters. In AADL, data subcomponents represent data
values, such as Booleans, integers, and floating-point numbers. The initial values
of data subcomponents and output ports are specified using the property:

Data_Model::Initial_Value => ("value");

Sometimes initial values can be parameters, instead of concrete values. E.g., you
can check whether a certain property holds from initial values satisfying a certain
constraint for those parameters (see Section 4). In HybridSynchAADL, such
unknown parameters can be declared using the following AADL property:

Data_Model::Initial_Value => ("param");

10

Example 3. Consider again our networked thermostat system. Figure 4 shows a
thread component ThermostatThread that turns the heater on or off depending
on the average value avg of the current temperatures of the two rooms. It has
event output ports on_control and off_control, data input ports curr and tin,
and data output ports set_power and tout. The ports on_control, off_control,
set_power, and curr are connected to an environment, and tin and tout are
connected to another controller component (see Fig. 5). The implementation has
the data subcomponent avg whose initial value is declared as a parameter.

When the thread dispatches, the transition from state init to exec is taken,
which updates avg using the values of the input ports curr and tin, and assigns
to the output port tout the value of curr. Since exec is not a complete state,
the thread continues executing by taking one of the other transitions, which
may send an event. For example, if the value of avg is smaller than 10, a control
command that sets the heater’s power to 5 is sent through the port set_power,
and an event is sent through the port off_control. The resulting state init is
a complete state, and the execution of the current dispatch ends.

thread ThermostatThread
features

on_control: out event port; off_control: out event port;
set_power: out data port Base_Types::Float;
curr: in data port Base_Types::Float;
tin: in data port Base_Types::Float;
tout: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
properties

Dispatch_Protocol => Periodic;
Hybrid_SynchAADL::Max_Clock_Deviation => 0.3ms;
Hybrid_SynchAADL::Sampling_Time => 1ms .. 5ms;
Hybrid_SynchAADL::Response_Time => 7ms .. 9ms;

end ThermostatThread;

thread implementation ThermostatThread.impl
subcomponents

avg : data Base_Types::Float {Data_Model::Initial_Value => ("param");};
annex behavior_specification{**

states
init : initial complete state; exec : state;

transitions
init -[on dispatch]-> exec { avg := (tin + curr) / 2; tout := curr };
exec -[avg > 25]-> init { off_control! };
exec -[avg < 20 and avg >= 10]-> init { set_power := 5; on_control! };
exec -[avg < 10]-> init { set_power := 10; on_control! }; **};

end ThermostatThread.impl;

Fig. 4. A simple thermostat controller.

11

3.3 Communication

There are three kinds of ports in AADL: data ports, event ports, and event
data ports. In AADL, event and event data ports can trigger the execution
of threads, whereas data ports cannot. In HybridSynchAADL, connections
are constrained for synchronous behaviors: no connection is allowed between
environments, or between environments and the enclosing system components.

Connections Between Discrete Controllers. All (non-actuator) output values of
controller components generated in an iteration are available to the receiving
controller components at the beginning of the next iteration. As explained in
[9,12], delayed connections between data ports meet this requirement. Therefore,
two controller components can be connected only by data ports with delayed
connections, declared by the connection property:

Timing => Delayed;

Connections Between Controllers and Environments. In HybridSynchAADL,
interactions between a controller and an environment occur instantaneously at
the sampling and actuating times of the controller.5 Because an environment
does not “actively” send data for sampling, every output port of an environment
must be a data port, whereas its input ports could be of any kind.

On the other hand, any types of input ports, such as data, event, event
data ports, are available for environment components. Specifically, a discrete
controller can trigger a mode transition of an environment through event ports.
Therefore, no extra requirement is needed for connections, besides the usual
constraints for port to port connections in AADL.

Example 4. Figure 5 shows an implementation of a top-level system compo-
nent TwoThermostats of our networked thermostat system, depicted in Figure 1.
This component has no ports and contains two thermostats and their environ-
ments. The controller system component Thermostat.impl is implemented using
the thread component ThermostatThread.impl in Fig. 4, and the environment
component RoomEnv.impl is given in Fig. 3. Each discrete controller ctrli, for
i = 1, 2, is connected to its environment component envi using four connections
turnOni, turnOffi, setPoweri, and getTempi. The controllers ctrl1 and ctrl2
are connected with each other using delayed data connections send1 and send2.

4 The HybridSynchAADL Tool

This section introduces the HybridSynchAADL tool supporting the modeling
and formal analysis of HybridSynchAADL models. The tool is an OSATE
plugin which: (i) provides an intuitive language to specify properties of models,
(ii) synthesizes a rewriting logic model from a HybridSynchAADL model, and
(iii) performs various formal analyses using Maude combined with SMT solving.
5 More precisely, processing times and delays between environments and controllers
are modeled using sampling and actuating times.

12

system implementation TwoThermostats.impl
subcomponents

ctrl1: system Thermostat.impl; ctrl2: system Thermostat.impl;
env1: system RoomEnv.impl; env2: system RoomEnv.impl;

connections
turnOn1: port ctrl1.on_control -> env1.on_control;
turnOff1: port ctrl1.off_control -> env1.off_control;
setPower1: port ctrl1.set_power -> env1.power;
getTemp1: port env1.temp -> ctrl1.curr;
send1: port ctrl1.tout > ctrl2.tin;
turnOn2: port ctrl2.on_control -> env2.on_control;
turnOff2: port ctrl2.off_control -> env2.off_control;
setPower2: port ctrl2.set_power -> env2.power;
getTemp2: port env2.temp -> ctrl2.curr;
send2: port ctrl2.tout -> ctrl1.tin;

properties
Hybrid_SynchAADL::Synchronous => true;
Period => 10 ms;
Timing => Delayed applies to send1, send2;

end TwoThermostats.impl;

Fig. 5. A top level component with two thermostat controllers.

4.1 Property Specification Language

HybridSynchAADL’s property specification language allows the user to easily
specify invariant and reachability properties in an intuitive way, without having
to understand Maude or the formal representation of the models. Such properties
are given by propositional logic formulas whose atomic propositions are AADL
Boolean expressions. Because HybridSynchAADL models are infinite-state
systems, we only consider properties over behaviors up to a given time bound.

Atomic propositions are given by Boolean expressions in the AADL Behavior
Annex syntax. Each identifier is fully qualified with its component path in the
AADL syntax. A scoped expression of the form path | exp denotes that each
component path of each identifier in the expression exp begins with path. A
“named” atomic proposition can be declared with an identifier as follows:

proposition [id]: AADL Boolean Expression

Such user-defined propositions can appear in propositional logic formulas, with
the prefix ? for parsing purposes, for invariant and reachability properties.

An invariant property is composed of an identifier name, an initial condition
ϕinit , an invariant condition ϕinv , and a time bound τbound , where ϕinit and ϕinv

are in propositional logic. Intuitively, the invariant property holds if for every
(initial) state satisfying the initial condition ϕinit , all states reachable within the
time bound τbound satisfy the invariant condition ϕinv .

invariant [name]: ϕinit ==> ϕinv in time τbound

13

A reachability property (the dual of an invariant) holds if a state satisfying
ϕgoal is reachable from some state satisfying the initial condition ϕinit within
the time bound τbound . It is worth noting that a reachability property can be
expressed as an invariant property by negating the goal condition.

reachability [name]: ϕinit ==> ϕgoal in time τbound

We can simplify component paths that appear repeatedly in conditions using
component scopes. A scoped expression of the form

path | exp

denotes that the component path of each identifier in the expression exp begins
with path. For example, c1 . c2 | ((x1 > x2) and (b1 = b2)) is equivalent
to (c1 . c2 . x1 > c1 . c2 . x2) and (c1 . c2 . b1 = c1 . c2 . b2). These
scopes can be nested so that one scope may include another scope. For example,
c1 | ((c2 | (x > c3 . y)) = (c4 | (c5 | b))) is equivalent to the expression
(c1 . c2 . x > c1 . c2 . c3 . y) = c1 . c4 . c5 . b.

Example 5. Consider the thermostat system in Section 3 that consists of two
thermostat controllers ctrl1 and ctrl2 and their environments env1 and env2,
respectively. The following declares two propositions inRan1 and inRan2 using
the property specification language. For example, inRan1 holds if the value of
env1’s data subcomponent x is between 10 and 25.

proposition [inRan1]: env1 | (x > 10 and x <= 25)
proposition [inRan2]: env2 | (x > 5 and x <= 10)

The following declares the invariant property inv. The initial condition states
that the value of env1’s data subcomponent x satisfies |x−15| < 3 and the value
of env2’s data subcomponent x satisfies |x − 7| < 1. This property holds if for
each initial state satisfying the initial condition, any reachable state within the
time bound 30 satisfies the conditions inRan1, inRan2, and env1.x > env2.x.

invariant [inv]: abs(env1.x - 15) < 3 and abs(env2.x - 7) < 1
==> ?inRan1 and ?inRan2 and (env1.x > env2.x) in time 30

4.2 Tool Interface

Figure 6 depicts the architecture of the HybridSynchAADL tool. The tool
first statically checks whether a given model is a valid model that satisfies the
syntactic constraints of HybridSynchAADL in Section 3. It uses OSATE’s
code generation facilities to synthesize the corresponding Maude model from the
validated model. Finally, our tool invokes Maude and an SMT solver to check
whether the model satisfies given invariant and reachability requirements with
respect to the formal semantics of HybridSynchAADL. The Result view in
OSATE displays the results of the analysis in a readable format.

14

HybridSynchAADL Tool
HybridSynchAADL

Model

Requirement

OSATE Result View

Code
Generation

Constraint
Checking Rewriting

Logic
Model

Formal Analysis
Symbolic Reachability

Randomized Simulation

Fig. 6. The architecture of the HybridSynchAADL tool.

Fig. 7. Interface of the HybridSynchAADL tool.

By syntactically validating a HybridSynchAADL model, we ensure that
the model satisfies all the syntactic constraints of HybridSynchAADL, and
thus the corresponding Maude model is executable. For example, environment
components (with Hybrid_SynchAADL::isEnvironment) can only contain data
subcomponents of type Base_Types::Float, and must declare the continuous
dynamics using Hybrid_SynchAADL::ContinuousDynamics. The tool checks other
“trivial” constraints that are assumed in the semantics of HybridSynchAADL;
e.g., all input ports are connected to some output ports.

HybridSynchAADL provides two formal analysis methods. Symbolic reach-
ability analysis can verify that all possible behaviors—imposed by sensing and
actuation times based on imprecise clocks—satisfy a given requirement;6 if not,
a counterexample is generated. Randomized simulation repeatedly executes the
model (using Maude) until a counterexample is found, by randomly choosing
concrete sampling and actuating times, nondeterministic transitions, etc.

Our tool also provides portfolio analysis that combines symbolic reachability
analysis and randomized simulation. HybridSynchAADL runs both methods
in parallel using multithreading, and displays the result of the analysis that
terminates first. Symbolic reachability analysis can guarantee the absence of a
counterexample, whereas randomized simulation is effective for finding “obvious”
bugs. Portfolio analysis combines the advantages of both approaches.

6 Symbolic analysis only supports (nonlinear) polynomial continuous dynamics, since
the underlying SMT solver, Yices2, does not support general classes of ODEs.

15

Fig. 8. Rendezvous and formation control of distributed drones

Figure 7 shows the interface of our tool that is fully integrated into OSATE.
The left editor shows the code of FourDronesSystem in Section 5, the bottom
right editor shows its graphical representation, and the top right editor shows
two properties in the property specification language. The HybridSynchAADL
menu contains three items for constraint checking, code generation, and formal
analysis. The Portfolio Analysis item has been already clicked, and the Result
view at the bottom displays the analysis results in a readable format.

5 Case Study: Collaborating Autonomous Drones

This section shows how virtually synchronous CPSs for controlling distributed
drones can be modeled and analyzed using HybridSynchAADL. Controllers
of multiple drones collaborate to achieve common maneuver goals, such as ren-
dezvous or formation control depicted in Fig. 8. The controllers are physically
distributed, since a controller is included in the hardware of each drone. Our
models take into account continuous dynamics, asynchronous communication,
network delays, clock skews, execution times, sampling and actuating times, etc.

5.1 Distributed Consensus Algorithms

We use distributed consensus algorithms [44] to synchronize the drone move-
ments. Each drone has an information state that represents the drone’s local
view of the coordination task, such as the rendezvous position, the center of a
formation, etc. There is no centralized controller with a “global” view. Each drone
periodically exchanges the information state with neighboring drones, and even-
tually the information states of all drones should converge to a common value.

Consider N drones moving in two-dimensional space. Let two-dimensional
vectors ~xi, ~vi, and ~ai, for 1 ≤ i ≤ N , denote, respectively, the position, velocity
and, acceleration of the i-th drone. The continuous dynamics of the i-th drone
is then specified by the ordinary differential equations ~̇xi = ~vi and ~̇vi = ~ai.
Let A denote the adjacency matrix representing the underlying communication
network. In particular, if the (i, j) entry Aij of A is 0, the i-th drone cannot
receive information from the j-th drone. The controller of a drone gives the
value of acceleration as a control input.

16

The goal of the rendezvous problem [44] is for all drones to arrive near a
common location simultaneously. In a distributed consensus algorithm, the ac-
celeration ~ai of the i-th drone is given by the following equation:

~ai = −
N∑
j=1

Aij
(
(~xi − ~xj) + γ(~vi − ~vj)

)
,

where γ > 0 denotes the coupling strength between ~vi. The information state
~xi of the i-th drone is directed toward the information states of its neighbors
and eventually converges to a consensus value. It is worth noting that the exact
location and time of the rendezvous are not given.

In formation control problems [44], one drone is designated as a leader and
the other drones follow the leader in a given formation. The information state is
the position of the leader that is continuously changing. Suppose that the N -th
drone is the leader and the others are the followers. The acceleration ~ai of the
i-th drone is given by the following equation:

~ai = ~aN − α
(
(~ei − ~xN) + γ(~vi − ~vN)

)
−
N−1∑
j=1

Aij
(
(~ei − ~ej) + γ(~vi − ~vj)

)
,

where ~ei = ~xi − ~oi with ~oi an offset vector for the formation, and α and γ
are positive constants. The position ~xi of the i-th drone eventually converges to
~xN − ~oi, while the position ~xN of the leader changes with velocity ~vN .

For both cases, a simplified model for drones with single-integrator dynamics
is also considered, assuming acceleration is negligible. Acceleration ~ai is always
0, and the controller of a drone directly gives the value of velocity as a control
input. For single-integrator dynamics, the following equations provide velocity
~vi for rendezvous and formation control, respectively [44]:

~vi = −
N∑
j=1

Aij(~xi − ~xj), ~vi = ~vN − α(~ei − ~xN)−
N−1∑
j=1

Aij(~ei − ~ej).

This model provides a reasonable approximation when the velocity is low and is
often much easier to analyze using SMT solving.

5.2 The HybridSynchAADL Model

This section presents a HybridSynchAADL model that specifies rendezvous
for four distributed drones. We show models for single-integrator dynamics. A
controller for double-integrator dynamics with acceleration needs to exchange
velocity as well as positions with other controllers, and thus the HybridSynch-
AADL model requires much more text to specify connections. Nevertheless, we
have developed a variety of HybridSynchAADL models for both rendezvous
and formation control of different numbers of drones with respect to single-
integrator and double-integrator dynamics. All these models are available at
https://hybridsynchaadl.github.io.

https://hybridsynchaadl.github.io

17

FourDrones Hybrid_SynchAADL::Synchronous => true
Hybrid_SynchAADL::Max_Clock_Deviation => 10ms
Period => 100ms

Drone1 Drone2 Drone3 Drone4

Drone
Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms
Hybrid_SynchAADL::Response_Time => 6ms .. 9ms

Environment Controller
~x

<latexit sha1_base64="1BXJDaX2rm10Ymz/ZPwn4wBW4M0=">AAACNXicbZDNSsNAFIUn9a/Wv1Y3gptgEVxISaSiy6IblxXsD7ShTCbTdugkE2ZuSkPoQ7jVB/FZXLgTt76CkzQLbXtg4HC+e+HOcUPOFFjWh1HY2Nza3inulvb2Dw6PypXjthKRJLRFBBey62JFOQtoCxhw2g0lxb7LacedPKS8M6VSMRE8QxxSx8ejgA0ZwaCjTn9KSTKbD8pVq2ZlMleNnZsqytUcVIzTvidI5NMACMdK9WwrBCfBEhjhdF7qR4qGmEzwiPa0DbBP1ZU3ZaHKrJPMstvn5oWmnjkUUr8AzCz9u51gX6nYd/Wkj2GsllkarmUKfCxj6a2FaQJCcLWO9iIY3jkJC8IIaEAWNw4jboIw0w5Nj0lKgMfaYCKZ/rJJxlhiArpp3aW93NyqaV/X7Hrt5qlebdznrRbRGTpHl8hGt6iBHlETtRBBE/SCXtGb8W58Gl/G92K0YOQ7J+ifjJ9falSsVA==</latexit>

~v

<latexit sha1_base64="0RddcuPTuhF0h1sSzcDvX70cOsQ=">AAACNXicbZDNSsNAFIUn/tb61+pGcBMsggspiVR0WXTjsoL9gTaUyWTSDp1kwsxNsIQ+hFt9EJ/FhTtx6ys4SbPQtgcGDue7F+4cN+JMgWV9GGvrG5tb26Wd8u7e/sFhpXrUUSKWhLaJ4EL2XKwoZyFtAwNOe5GkOHA57bqT+4x3EyoVE+ETTCPqBHgUMp8RDDrqDhJK0mQ2rNSsupXLXDZ2YWqoUGtYNU4GniBxQEMgHCvVt60InBRLYITTWXkQKxphMsEj2tc2xAFVl17CIpVbJ33Ob5+Z55p6pi+kfiGYefp3O8WBUtPA1ZMBhrFaZFm4kikIsJxKbyXMEhCCq1W0H4N/66QsjGKgIZnf6MfcBGFmHZoek5QAn2qDiWT6yyYZY4kJ6KZ1l/Zic8umc1W3G/Xrx0ateVe0WkKn6AxdIBvdoCZ6QC3URgRN0At6RW/Gu/FpfBnf89E1o9g5Rv9k/PwCZrysUg==</latexit>

out

in

Fig. 9. The AADL architecture of four drones (left), and a drone component (right).

Figure 9 illustrates the AADL architecture of our model for rendezvous.
There are four drone components. Each drone is connected with two other drones
to exchange positions. For example, Drone 1 sends its position to Drone 2, and
receives the position of Drone 4. A drone component consists of an environment
and its controller. An environment component specifies the physical model of the
drone, including position and velocity. A controller component interacts with the
environment according to the sampling and actuating times. All controllers in
the model have the same period.

In each round, a controller determines a new velocity to synchronize its move-
ment with the other drones. The controller obtains the position ~x from its en-
vironment according to the sampling time. The position of the connected drone
is sent in the previous round, and is already available to the controller at the
beginning of the round. The controller sends the current position ~x through its
output port. In the meantime, the environment changes its position according
to the velocity indicated by its controller, where the new velocity ~v from the
controller becomes effective according to the actuation time.

Top-Level Component. The top-level component includes four Drone components
(Fig. 10). Each drone sends its position through its output ports oX and oY, and
receives the position of the other drone through its input ports iX and iY. The
component is declared to be synchronous with period 100 ms. Also, to meet the
constraints of HybridSynchAADL, the connections between drone components
are delayed and the output ports have some initial values. The maximal clock
skew is given by Hybrid_SynchAADL::Max_Clock_Deviation.

Drone Component. A drone component in Fig. 11 has input ports iX and iY and
output ports oX and oY. Its implementation Drone.impl contains a controller
ctrl and an environment env. The controller ctrl obtains the current position
from env via input ports cX and cY, and sends a new velocity to env via output
ports vX and vY, according to its sampling and actuating times.

Environment. Figure 12 shows an Environment component that specifies the
physical model of the drone. It has two input ports vX and vY and two output
ports cX and cY. Data subcomponents x, y, velx and vely represent the position
and velocity of the drone. The values of x and y are sent to the controller through
the output ports cX and cY. When a controller sends an actuation command to
ports vX and vY, the values of velx and vely are updated by the values of vX
and vY, or the mode changes according to the mode transitions. The dynamics

18

system FourDronesSystem
end FourDronesSystem;

system implementation FourDronesSystem.impl
subcomponents

dr1: system Drone::Drone.impl; dr2: system Drone::Drone.impl;
dr3: system Drone::Drone.impl; dr4: system Drone::Drone.impl;

connections
C1: port dr1.oX -> dr2.iX; C2: port dr1.oY -> dr2.iY;
C3: port dr2.oX -> dr3.iX; C4: port dr2.oY -> dr3.iY;
C5: port dr3.oX -> dr4.iX; C6: port dr3.oY -> dr4.iY;
C7: port dr4.oX -> dr1.iX; C8: port dr4.oY -> dr1.iY;

properties
Hybrid_SynchAADL::Synchronous => true;
Period => 100ms;
Hybrid_SynchAADL::Max_Clock_Deviation => 10ms;
Timing => Delayed applies to C1, C2, C3, C4, C5, C6, C7, C8;
Data_Model::Initial_Value => ("0.0") applies to

dr1.oX, dr2.oX, dr3.oX, dr4.oX,
dr1.oY, dr2.oY, dr3.oY, dr4.oY;

end FourDronesSystem.impl;

Fig. 10. The top-level system component FourDronesSystem.

system Drone
features

iX: in data port Base_Types::Float; oX: out data port Base_Types::Float;
iY: in data port Base_Types::Float; oY: out data port Base_Types::Float;

end Drone;

system implementation Drone.impl
subcomponents

ctrl: system DroneControl::DroneControl.impl;
env: system Environment::Environment.impl;

connections
C1: port ctrl.oX -> oX; C2: port ctrl.oY -> oY;
C3: port iX -> ctrl.iX; C4: port iY -> ctrl.iY;
C5: port env.cX -> ctrl.cX; C6: port env.cY -> ctrl.cY;
C7: port ctrl.vX -> env.vX; C8: port ctrl.vY -> env.vY;

properties
Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;
Hybrid_SynchAADL::Response_Time => 6ms .. 9ms;

end Drone.impl;

Fig. 11. A drone component in HybridSynchAADL.

19

system Environment
features

cX: out data port Base_Types::Float;
cY: out data port Base_Types::Float;
vX: in data port Base_Types::Float;
vY: in data port Base_Types::Float;

properties
Hybrid_SynchAADL::isEnvironment => true;

end Environment;

system implementation Environment.impl
subcomponents

x: data Base_Types::Float; y: data Base_Types::Float;
velx: data Base_Types::Float; vely: data Base_Types::Float;

connections
C1: port x -> cX; C2: port y -> cY;
C3: port vX -> velx; C4: port vY -> vely;

properties
Hybrid_SynchAADL::ContinuousDynamics =>

"x(t) = velx * t + x(0); y(t) = vely * t + y(0);";
Data_Model::Initial_Value => ("param") applies to x, y, velx, vely;

end Environment.impl;

Fig. 12. An environment component in HybridSynchAADL.

of (x, y) is given as continuous functions x(t) = velxt+ x(0) and y(t) = velyt+
y(0) over time t in Hybrid_SynchAADL::ContinuousDynamics, which are actually
equivalent to the ordinary differential equations ẋ = velx and ẏ = vely.

Controller. Figure 13 shows a controller system component. As explained above,
there are four ports iX, iY, oX, and oY for communicating with other con-
trollers, and four ports cX, cY, vX, and vY for interacting with the environment.
The system implementation DroneControl.impl includes the process component
ctrlProc. As shown in Figure 14, ctrlProc again includes the thread component
cThread in its implementation DroneControlProc.impl. The input and output
ports of a wrapper component (e.g., ctrlProc) are connected to the ports of the
enclosed subcomponent (e.g., cThread).

Figure 15 shows a thread component for a drone controller. When the thread
dispatches, the transition from init to exec is taken. When the distance between
the current position and the connected drone is too close, the new velocity is
set to (0, 0) and the close flag is set to true to avoid a collision. Otherwise,
the new velocity is set toward the connected drone according to a discretized
version of the distributed consensus algorithm. That is, the new velocity (vX,
vY) is chosen from a predefined set of velocities, according to the value (nx, ny)
obtained by the distributed consensus algorithm and the close flag. Finally, the
current position is assigned to the output ports oX and oY.

20

system DroneControl
features

iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
cX: in data port Base_Types::Float;
cY: in data port Base_Types::Float;
vX: out data port Base_Types::Float;
vY: out data port Base_Types::Float;

end DroneControl;

system implementation DroneControl.impl
subcomponents

ctrlProc: process DroneControlProc.impl;
connections

C1: port ctrlProc.oX -> oX; C2: port ctrlProc.oY -> oY;
C3: port iX -> ctrlProc.iX; C4: port iY -> ctrlProc.iY;
C5: port cX -> ctrlProc.cX; C6: port cY -> ctrlProc.cY;
C7: port ctrlProc.vX -> vX; C8: port ctrlProc.vY -> vY;

end DroneControl.impl;

Fig. 13. A controller system component.

process DroneControlProc
features

iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
cX: in data port Base_Types::Float;
cY: in data port Base_Types::Float;
vX: out data port Base_Types::Float;
vY: out data port Base_Types::Float;

end DroneControlProc;

process implementation DroneControlProc.impl
subcomponents

cThread: process DroneControlThread.impl;
connections

C1: port cThread.oX -> oX; C2: port cThread.oY -> oY;
C3: port iX -> cThread.iX; C4: port iY -> cThread.iY;
C5: port cX -> cThread.cX; C6: port cY -> cThread.cY;
C7: port cThread.vX -> vX; C8: port cThread.velY -> vY;

end DroneControlProc.impl;

Fig. 14. A controller process component

21

thread DroneControlThread
features

iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
cX: in data port Base_Types::Float;
cY: in data port Base_Types::Float;
vX: out data port Base_Types::Float;
vY: out data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end DroneControlThread;

thread implementation DroneControlThread.impl
subcomponents

close: data Base_Types::Boolean
{Data_Model::Initial_Value => ("false");};

annex behavior_specification {**
variables

nx, ny : Base_Types::Float;
states

init: initial complete state; exec, output: state;
transitions

init -[on dispatch]-> exec;
exec -[abs(cX - iX) < 0.5 and abs(cY - iY) < 0.5]-> output {

vX := 0; vY := 0; close := true
};
exec -[otherwise]-> output {

nx := -#DroneSpec::A * (cX - iX);
ny := -#DroneSpec::A * (cY - iY);
if (nx > 0.3) vX := 2.5
elsif (nx > 0.15)

if (close) vX := 1.5
else vX := 0.0
end if

else vX := -2.5
end if;
if (ny > 0.3) vY := 2.5
elsif (ny > 0.15)

if (close) vY := 1.5
else vY := 0.0
end if

else vY := -2.5
end if;
close := false };

output -[]-> init { oX := cX; oY := cY };
**};

end DroneControlThread.impl;

Fig. 15. A controller thread in HybridSynchAADL

22

5.3 Formal Analysis Using the HybridSynchAADL Analyzer

We consider two properties of the drone rendezvous model: (i) drones do not col-
lide (safety), and (ii) all drones could eventually gather together (rendezvous).
Because the drone model is a distributed hybrid system, these properties depend
on the continuous behavior perturbed by sensing and actuating times based on
imprecise local clocks. We analyze them up to bound 500 ms using Hybrid-
SynchAADL portfolio analysis.

invariant [safety]: ?initial ==> not ?collision in time 500;

reachability [rendezvous]: ?initial ==> ?gather in time 500;

We define three atomic propositions collision, gather, and initial for four
drones dr1, dr2, dr3, and dr4. Two drones collide if the distance between them
is less than 0.1. All nodes have gathered if the distance between each pair of
nodes is less than 1. The initial values of x, y, velx and vely are declared to
be parametric in Fig. 12 and constrained by the condition initial. There are
infinitely many initial states satisfying the proposition initial.

proposition [collision]:
(abs(dr1.env.x - dr2.env.x) < 0.1 and abs(dr1.env.y - dr2.env.y) < 0.1) or
(abs(dr1.env.x - dr3.env.x) < 0.1 and abs(dr1.env.y - dr3.env.y) < 0.1) or
(abs(dr1.env.x - dr4.env.x) < 0.1 and abs(dr1.env.y - dr4.env.y) < 0.1) or
(abs(dr2.env.x - dr3.env.x) < 0.1 and abs(dr2.env.y - dr3.env.y) < 0.1) or
(abs(dr2.env.x - dr4.env.x) < 0.1 and abs(dr2.env.y - dr4.env.y) < 0.1) or
(abs(dr3.env.x - dr4.env.x) < 0.1 and abs(dr3.env.y - dr4.env.y) < 0.1);

proposition [gather]:
abs(dr1.env.x - dr2.env.x) < 1 and abs(dr1.env.y - dr2.env.y) < 1 and
abs(dr1.env.x - dr3.env.x) < 1 and abs(dr1.env.y - dr3.env.y) < 1 and
abs(dr1.env.x - dr4.env.x) < 1 and abs(dr1.env.y - dr4.env.y) < 1 and
abs(dr2.env.x - dr3.env.x) < 1 and abs(dr2.env.y - dr3.env.y) < 1 and
abs(dr2.env.x - dr4.env.x) < 1 and abs(dr2.env.y - dr4.env.y) < 1 and
abs(dr3.env.x - dr4.env.x) < 1 and abs(dr3.env.y - dr4.env.y) < 1;

proposition [initial]:
abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < 0.01 and
abs(dr2.env.x + 1.5) < 0.01 and abs(dr2.env.y + 1.1) < 0.01 and
abs(dr3.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < 0.01 and
abs(dr4.env.x + 1.1) < 0.01 and abs(dr4.env.y + 1.5) < 0.01;

The result of the analysis is shown in Figure 16. The HybridSynchAADL Result
view displays a witness for rendezvous (by symbolic analysis in 1.7 seconds), and
a counterexample for safety (by randomized simulation in 1.5 seconds). A con-
crete counterexample of safety is shown in the editor as a sequence of states
for synchronous steps. For example, the drone dr3 has velocity (−5125, 5682) at
time 0 (i.e, in the initial state). Because initial has no velocity constraint, the
drones can have an unrealistic speed in the initial state.

23

Fig. 16. Results for the safety and rendezvous properties.

We therefore modify safety and rendezvous below by adding such a velocity
constraint velconst to the initial condition. As shown in Fig. 17, there is now no
counterexample to safety up to bound 500. The result is obtained by symbolic
analysis for safety, and by randomized simulation for rendezvous.

invariant [safety]: ?initial and ?velconst ==> not ?collision in time 500;
reachability [rendezvous]: ?initial and ?velconst ==> ?gather in time 500;

proposition [velconst]:
abs(dr1.env.vx) <= 0.01 and abs(dr1.env.vy) <= 0.01 and
abs(dr2.env.vx) <= 0.01 and abs(dr2.env.vy) <= 0.01 and
abs(dr3.env.vx) <= 0.01 and abs(dr3.env.vy) <= 0.01 and
abs(dr4.env.vx) <= 0.01 and abs(dr4.env.vy) <= 0.01;

Although the time bound in the example is small, our verification involves
infinitely many (continuous) behaviors, for all possible local clocks, sampling
and actuation times, initial states, etc. We therefore precisely verify that the
“local” behaviors, perturbed by clock skews and sampling/actuation times, are
all correct, which is an important problem for virtually synchronous CPSs.

24

Fig. 17. Results for the modified properties.

6 Executable Formal Semantics of HybridSynchAADL

This section presents the Maude-with-SMT semantics of HybridSynchAADL
that implements our tool’s analysis commands. Since the HybridSynchAADL
modeling language extends Synchronous AADL, the semantics of discrete con-
trollers extends that of Synchronous AADL [9, 12], while the semantics of con-
tinuous environments (and interactions with them) and nontrivial interactions
between controllers and environments, is new. Specifically, an SMT encoding
for synchronous Hybrid PALS models in [10] is not directly applicable, since
HybridSynchAADL models are hierarchical. The full semantics of Hybrid-
SynchAADL is available in https://hybridsynchaadl.github.io.

6.1 Overview

The semantics of HybridSynchAADL is defined in an object-oriented style.
Each component in a HybridSynchAADL model is represented as an object
instance of the corresponding class, and rewrite rules involving such objects
specify the behavior of the component. Since AADL can have a hierarchical
structure, our semantics is based on hierarchical objects, where some attribute
value or an object may contain other objects.

We use constrained object terms of the form φ(x1, . . . , xn) ‖ obj (x1, . . . , xn)
to symbolically represent an infinite number of objects, where an SMT con-
straint φ(x1, . . . , xn) and an object “pattern” obj (x1, . . . , xn) over SMT variables
x1, . . . , xn represent (possibly infinite) sets of objects. Such object patterns may
be hierarchical; for example, obj (x1, . . . , xn) may include other object patterns
over x1, . . . , xn in its attributes. Similarly, constrained configurations have the
form φ ‖ conf with conf a multiset of object patterns.

Our semantics defines various semantic operations to formally specify the
behavior of components, behavior transitions, environments, communications,
etc. These semantic operations are defined on constrained terms. A semantic
operation f specifies a symbolic rewrite relation

f(φ ‖ t) φ′ ‖ t′.

Notice that f can be nondeterministic; e.g., there could be many constrained
terms φ′1 ‖ t′1, . . . , φ′n ‖ t′n with f(φ ‖ t) φ′i ‖ t′i for 1 ≤ i ≤ n. In this paper,
we often call f a semantic function if f is a deterministic semantic operation.

In our semantics, these semantic operations are declared using the function
check-sat that invokes the underlying SMT solver to check the satisfiability of
an SMT constraint. For example, many semantic operations in our semantics
are declared using conditional rewrite rules of the form

https://hybridsynchaadl.github.io

25

crl f(PHI || u) => (PHI and ϕ) || v
if condition /\ check-sat(PHI and ϕ) .

where PHI is a variable that denotes an SMT constraint, ϕ denotes a newly
generated constraint, and check-sat checks the satisfiability of the accumulated
constraints using the SMT solver.

“Continuous” semantic operations for environment components can easily be
specified using conditional rewrite rules of the above form, provided that the
continuous dynamics can be specified as SMT constraints (e.g., polynomials).

6.2 SMT Expressions

SMT values are terms of sort Value. There are three kinds of SMT values.
Boolean values are either [true] or [false], and real values are [r] for rational
constants r ∈ Q (a value v is written as the term [v] to avoid parsing issues in
Maude). A unit value ∗ denotes the presence of an event.

sorts Value BoolValue RealValue UnitValue .
subsorts BoolValue RealValue UnitValue < Value .
op [_] : Bool -> BoolValue [ctor] .
op [_] : Rat -> RealValue [ctor] .
op * : -> UnitValue [ctor] .

It is worth noting that SMT values are different from syntactic values that
are defined by the syntax of AADL. Each syntactic value corresponds to a SMT
value, but different syntactic values may correspond to the same SMT value,
when they have the same meaning (e.g., 1 and 1.0). Also, some SMT value may
have no syntactic counterpart (e.g., the unit value ∗).

SMT variables are declared as terms of sort SMTVar, and there are two kinds
of SMT variables: Boolean variables of the form b(id), and real variables of the
form r(id), where id is a natural number.

sorts SMTVar SMTBoolVar SMTRealVar .
subsorts SMTBoolVar SMTRealVar < SMTVar .
op b : Nat -> SMTBoolVar [ctor] .
op r : Nat -> SMTRealVar [ctor] .

A fresh variable can be obtained by maintaining a pair of counters < i, j >,
where i and j are next indices for real and Boolean variables, respectively. The
function gen generates a fresh variable of a given type:

eq gen(< I, J >, Boolean) = {b(J), < I, J + 1 >} .
eq gen(< I, J >, Real) = {r(I), < I + 1, J >} .
eq gen(< I, J >, Unit) = { *, < I, J >} .

Symbolic expressions are terms of sort Exp, a supersort of both Value and
SMTVar, and are constructed by symbolic values, symbolic variables, and the usual
logical, arithmetic, comparison, and conditional operators (which are available
in SMT). For example, the symbolic expression

26

(([1] + r(1) > [2] * r(2)) or b(1)) === (b(2) and [true])

of sort BoolExp represents the pattern (1 + x1 > 2 ∗ x2 or b1) = (b2 and true).7

sort Exp .
subsorts Value SMTVar < Exp .

sort BoolExp .
subsorts BoolValue SMTBoolVar < BoolExp < Exp .
op not_ : BoolExp -> BoolExp [prec 53] .
op _and_ : BoolExp BoolExp -> BoolExp [assoc comm prec 55] .
. . .
sort RealExp.
subsorts RealValue SMTRealVar < RealExp < Exp .
op -_ : RealExp -> RealExp .
op _+_ : RealExp RealExp -> RealExp [assoc comm prec 33] .
. . .
sort UnitExp .
subsorts UnitValue < UnitExp < Exp .
op * : -> UnitValue [ctor] .
op _===_ : UnitExp UnitExp -> BoolExp [gather (e E) prec 51] .

6.3 Representing HybridSynchAADL Models

Components. A component instance in HybridSynchAADL is represented as
an instance of a subclass of the following base class Component.

The attribute features denotes a multiset of Port objects, representing the
ports of a component; subcomponents denotes a multiset of Component objects,
representing the hierarchical structure of components; connections denotes its
connections; and properties denotes its properties.

class Component | features : Configuration,
subcomponents : Configuration,
connections : Set{Connection},
properties : PropertyAssociation .

System, process, and thread group components in AADL are represented as
object instances of a subclass of the following class Ensemble:

class Ensemble .
subclass Ensemble < Component .

class System . class Process . class ThreadGroup .
subclass System Process ThreadGroup < Ensemble .

7 [1] and [2] are symbolic values of sort RealValue, [true] is a symbolic value of sort
BoolValue, r(1) and r(2) are symbolic variables of sort RealVar, and b(1) and b(2)
are symbolic variables of sort BoolVar.

27

Thread Components. Thread components are represented as object instances of
the Thread class that contains extra attributes for thread behaviors:

class Thread | variables : Map{VarId,DataType},
transitions : Set{Transition}
currState : Location,
completeStates : Set{Location},
varGen : VarGen .

subclass Env < Component .

The attribute variables denotes the local (temporary) variables and their types;
currState denotes the current location of the thread; completeStates denotes
the complete states; transitions denotes its transitions; and varGen denotes
counters < i, j > to generate a fresh symbolic variable.

A transition system of a thread is represented as a (semi-colon-separated)
set of transitions of the form: s -[guard]-> s′ {actions}, where s is a source
state, s′ is a destination state, guard is a Boolean condition, and {actions} is a
behavior action block.

Environment Components. Environment components are represented as object
instances of the Env class. The attribute currMode denotes the current mode,
jumps denotes the mode transitions, flows denotes the continuous dynamics,
sampling and response denote respectively the sets of sampling and actuating
times, and varGen denotes a fresh variable generator.

class Env | currMode : Location,
jumps : Set{EnvJump},
flows : Set{EnvFlow},
sampling : Set{InterTiming},
response : Set{InterTiming},
varGen : VarGen .

subclass Env < Component .

A mode transition system is represented as a (semi-colon-separated) set of mode
transitions m -[triggers]-> m′, where triggers is a set of port names.

A continuous dynamics in flows is represented as a (semi-colon-separated) set
of continuous dynamics assignments of the formm [continuous_dynacmis]where
m is a mode and continuous_dynacmis is either ODEs or continuous functions
as explained in Section 3.

A set Set{InterTiming} for sampling and actuation is represented as a
(comma-separated) set of interval assignments of the form o : (l, u), where o
is an object identifier of the corresponding controller, l is a lower time bound,
and u is an upper time bound.

Data Components. Data components specify state variables of threads and en-
vironments, where the attribute value denotes the current value:

class Data | value : DataContent .
subclass Data < Component .

28

In HybridSynchAADL, a data component has either no value (more pre-
cisely, some “don’t care” value ⊥) or a (Boolean or real) value. We symbolically
represent the data content of as a pair e # b of an SMT expression e and a
Boolean condition b. The data component has no value (i.e., ⊥) if b is false, and
a value represented by the expression e if b is true.

sort DataContent .
op _#_ : Exp BoolExp -> DataContent [ctor] .

Ports. A port is represented as an object instance of a subclass of the class Port,
where the attribute content denotes its data content, and properties denotes
its properties, such as DataModel::InitialValue. The subclasses InPort and
OutPort denote input and output ports, respectively.

class Port | content : DataContent, properties : PropertyAssociation .
class InPort . class OutPort .
subclass InPort OutPort < Port .

We distinguish between the ports of discrete components and the ports of
environment components, because their behaviors are significantly different. As
mentioned in Section 3, the communication between discrete components is de-
layed, i.e., outputs generated in one iteration are available at the destination
discrete components in the next iteration. On the other hand, the communica-
tion between discrete and environment components is immediate.

Ports of discrete components are represented as instances of the DataPort
class. An input data port contains the extra attribute cache to keep the previ-
ously received value; if an input port p has received ⊥ (i.e., e # false) in the
latest dispatch, the thread can use the value in the cache, while the behavior
annex expression p’fresh becomes false [8, 11].

class DataPort .
subclass DataPort < Port .

class DataInPort | cache : DataContent .
class DataOutPort .
subclass DataInPort < InPort DataPort .
subclass DataOutPort < OutPort DataPort .

Ports of environment components are represented as instances of the EnvPort
class, containing two extra attributes target and envCache. Because the port
communication depends on the sampling and actuating times of the connected
controller, an environment port keeps the identifier of the target component.8
To symbolically encode the immediate communication, the attribute envCache
contains a data content in the previous iteration (see Section 6.7).

8 This implies that no fan-out connection from an environment output port p exists,
i.e., p can only be connected to one controller input port.

29

class EnvPort | target : ComponentRef,
envCache : DataContent .

subclass EnvPort < Port .

class EnvInPort .
class EnvOutPort .
subclass EnvInPort < EnvPort InPort .
subclass EnvOutPort < EnvPort OutPort .

Connections. A connection set is represented as a semi-colon-separated set of
connections of the form pi --> po, where pi denotes the source port name and
po denotes the target port name. The name of a port p in a subcomponent c
is written as a term c .. p. A connection from an output port p1 in c1 to an
input port p2 in c2 is written as c1 .. p1 --> c2 .. p2. A level-up (resp., level-
down) connection, connecting a port p in a subcomponent c to the port p′ in the
“current” component is written as the term c .. p --> p′ (resp., p′ --> c .. p).

sort Connection .
op _-->_ : FeatureRef FeatureRef -> Connection [ctor] .

sort FeatureRef .
subsort FeatureId < FeatureRef .
op _.._ : ComponentRef FeatureId -> FeatureRef [ctor] .

sort ComponentRef .
subsort ComponentId < ComponentRef .
op _._ : ComponentRef ComponentRef -> ComponentRef [ctor assoc] .

We use different representations for internal connections of an environment
component between ports and data subcomponents. This makes it easier to
distinguish different types of connections when defining semantic operations. A
connection from a data subcomponent d to an output port p for sampling data
is written as the term d ==> p, and a connection from an input port p to a data
subcomponent d for updating data is written as the term p =>> d.

Example 6. An instance of the TwoThermostats.impl component in Fig. 5 is rep-
resented by the following object, where property values are enclosed by {{. . .}}.

< TwoThermostatsimplInstance : System |
features : none,
subcomponents : < ctrl1 : System | ... >

< ctrl2 : System | ... >
< env1 : Env | ... >
< env2 : Env | ... >,

connections : ctrl1 .. oncontrol --> env1 .. oncontrol ;
ctrl1 .. offcontrol --> env1 .. offcontrol ;
ctrl1 .. setpower --> env1 .. power ;
env1 .. temp --> ctrl1 .. curr ;

30

ctrl1 .. tou --> ctrl2 .. tin ;
ctrl2 .. oncontrol --> env2 .. oncontrol ;
ctrl2 .. offcontrol --> env2 .. offcontrol ;
ctrl2 .. setpower --> env2 .. power ;
env2 .. temp --> ctrl2 .. curr ;
ctrl2 .. tou --> ctrl1 .. tin,

properties : TimingProperties::Period => {{10}} ;
HybridSynchAADL::Synchronous => {{true}} >

Example 7. An instance of ThermostatThread.impl in Fig. 4 can be represented
by the following object, where the initial value of avg is a symbolic variable
r(0). For parsing purposes, syntactic values are enclosed by [[. . .]], component
identifiers are enclosed by c{. . .}, and port identifiers are enclosed by f{. . .} in
transitions.

< ctrlThread : Thread |
features :

< oncontrol : DataOutPort | content : * # [false], property : none >
< offcontrol : DataOutPort | content : * # [false], property : none >
< setpower : DataOutPort | content : [0] # [false], property : none >
< curr : DataInPort | content : [0] # [false], cache : [0] # [false],

property : none >
< tin : DataInPort | content : [0] # [false], cache : [0] # [false],

property : none >
< tou : DataOutPort | content : [0] # [true], property : none >,

subcomponents :
< avg : Data | value : r(0) # [true], features : none,

subcomponents : none, connections : empty,
property : none >,

connections : empty,
properties :

TimingProperties::Period => {{10}} ;
HybridSynchAADL::SamplingTime => {{1.0 .. 5.0}} ;
HybridSynchAADL::ResponseTime => {{7.0 .. 9.0}} ;
HybridSynchAADL::Synchronous => {{true}},

variables : empty,
transitions :

init -[on dispatch]-> exec {
(c{avg} := ((f[tin] + f[curr]) / [[2]])) ;
f{tou} := f[curr] } ;

exec -[c[avg] > [[25]]]-> init {
offcontrol !} ;

exec -[(c[avg] < [[20]]) and (c[avg] > [[10]])]-> init {
(f{setpower} := [[5]]) ;
oncontrol !} ;

exec -[c[avg] <= [[10]]]-> init {
(f{setpower} := [[10]]) ;
oncontrol !} ;

exec -[otherwise]-> init {skip},

31

currState : init,
completeStates : init,
varGen : < 1, 0 >

>

Example 8. An instance of RoomEnv.impl in Fig. 3 can be represented by the
following object. The contents of environment ports include symbolic variables,
such as r(1), b(0), and b(3), to symbolically encode the immediate communication
(see Section 6.7). For parsing purposes, syntactic values are enclosed by [[. . .]]
and component identifiers are enclosed by c{. . .} in flows.

< env1 : Env |
features : < temp : EnvOutPort | content : r(1) # b(3),

envCache : r(1) # b(3),
target : ctrl1, property : none >

< offcontrol : EnvInPort | content : * # [false],
envCache : * # b(0),
target : ctrl1, property : none >

< oncontrol : EnvInPort | content : * # [false],
envCache : * # b(1),
target : ctrl1, property : none >

< power : EnvInPort | content : [0] # [false],
envCache : r(0) # b(2),
target : ctrl1, property : none >,

subcomponents : < p : Data | value : [5] # [true], ... >
< x : Data | value : [15] # [true], ... >,

connections : x ==> temp ; power =>> p,
properties : Hybrid_SynchAADL::isEnvironment => {{true}} ;

TimingProperties::Period => {{10}} ;
HybridSynchAADL::Synchronous => {{true}},

currMode : toff,
jumps : ton -[offcontrol]-> toff ; toff -[oncontrol]-> ton,
flows : ton [x(t)= c[x] - ([[0.1]] * (c[x] - c[p] / [[0.1]]) * v[t])] ;

toff [x(t)= c[x] * ([[1.0]] - ([[0.1]] * v[t]))],
varGen : < 2, 4 >,
sampling : ctrl1 : (1,5),
response : ctrl1 : (7,9) >

6.4 Symbolic Synchronous Steps

The semantics of a single AADL component is specified using the partial opera-
tion executeStep that executes one synchronous iteration of the component,
by means of equations and rewrite rules. Unlike in the formal semantics of
Synchronous AADL in which executeStep is defined for a (concrete) object,
executeStep is applied to a constrained object that symbolically represents a
(possibly infinite) set of object instances.

32

op executeStep : ConstObject ~> ConstObject .

sort ConstObject .
subsort Object < ConstObject .
op _||_ : BoolExp Object -> ConstObject [ctor] .

In our semantics, all semantic operations, including executeStep, are partial.
Since a term containing partial operations does not have a sort, this is used to
ensure that equations and rules for semantic operations are only applied to an
object of sort Object in which all subcomponents have already finished their
semantic operations.

A (symbolic) synchronous step of the entire system, given by a top-level
closed system component with no ports, is formalized by the following rule,
where SYSTEM is a variable of sort Object:

rl [step]: {PHI || < C : System | features : none >}
=> {PHI and PHI’ || SYSTEM}

if executeStep(PHI || < C : System | >) => PHI’ || SYSTEM .

In the condition of the rule, any term of sort Object that includes no par-
tial operations, where executeStep has been completely evaluated obtained by
rewriting executeStep(PHI || < C : System | >) in zero or more steps can be
nondeterministically assigned to the variable SYSTEM of sort Object.

6.5 Ensemble Behavior

The following rewrite rule defines the behavior of ensemble components (such
as systems and processes), provided that the behavior of all the subcomponents
is defined using executeStep. (We explain how the semantics of threads and
environment components is defined by executeStep below.) This rule specifies
the synchronous composition of the subcomponents of an ensemble.

crl executeStep(PHI || < C : Ensemble | >) => PHI’ || transferResults(OBJ’)
if OBJ := transferInputs(< C : Ensemble | >)
/\ propagateExec(PHI, OBJ) => PHI’ || OBJ’
/\ check-sat(PHI and PHI’) .

First, each input port of the subcomponents receives a value from its source
by transferInputs. Next, exectueStep is applied to each subcomponent, along
with the constraint PHI, by propagateExec. Then, any term of sort Object ob-
tained by rewriting propagateExec(PHI, OBJ), where executeStep has been
completely evaluated in each subcomponent, is nondeterministically assigned
to OBJ’ of sort Object, together with the new constraint PHI’. Finally, the new
outputs of the subcomponents are transferred by transferResults.

Propagating Executions. Given an ensemble C and a Boolean constraint PHI,
the function propagateExec simply applies the operation executeStep to each
subcomponent Obj constrained by PHI. Each term executeStep(PHI || Obj)
can then be individually executed using rewrite rules and equations.

33

eq propagateExec(PHI, < C : Ensemble | subcomponents : COMPS >)
= < C : Ensemble | subcomponents : propExecAux(PHI, COMPS, none) > .

eq propExecAux(PHI, < C : Component | > COMPS, COMPS’)
= propExecAux(PHI, COMPS,

executeStep(PHI || < C : Component | >) COMPS’) .

eq propExecAux(PHI, none, COMPS’) = COMPS’ .

Transferring Data. Consider an ensemble component C. The semantic function
transferInputs moves data in the input ports of C or the feedback output ports
of its subcomponents into their connected input ports. The semantic function
transferResults transfers data in the output ports of the subcomponents to
their connected output ports of C; if such an output port is also connected to
another subcomponent, it keeps the data for the feedback output in the next
step. These functions are declared in the same way as those for Synchronous
AADL [11], except that data contents are pairs of symbolic values.

6.6 Thread Behavior

The following rule defines the behavior of threads. The function readFeature
returns a map from each input port to its current value, and readData returns a
map from each data subcomponent to its value. The operation execTrans non-
deterministically assigns any possible computation result of the behavior tran-
sition system to the pattern L’ | FMAP’ | DATA’ | PHI’ | GEN’. The function
writeFeature updates the content of each output port, and writeData updates
the value of each data subcomponent. The function check-sat invokes an SMT
solver to check whether the generated constraint is satisfiable. The constants
#loopbound# and #transbound# denote a loop unrolling bound and a transition
bound, respectively, for symbolic analysis.9

crl executeStep(
PHI || < C : Thread | features : PORTS, subcomponents : COMPS

properties : PROPS, currState : L,
transitions : TRS, completeStates : LS,
variables : VIS, varGen : GEN >)

=>
PHI’ || < C : Thread | features : writeFeature(FMAP’,PORTS’),

subcomponents : writeData(DATA’,COMPS),
currState : L’, varGen : GEN’ >

if {PORTS’,FMAP} := readFeature(PORTS)
/\ DATA := readData(COMPS)
/\ execTrans(feature(FMAP) data(DATA) prop(PROPS) const([true])

9 loopBound limits the number of loop unrolling when symbolically executing behavior
actions, and transBound limits the number of visiting the same behavior locations
in one synchronous step when symbolically executing behavior transitions.

34

location(L) complete(LS) trans(TRS) local(defaultVal(VIS))
lbound(#loopbound#) tbound(#transbound#) vargen(GEN))

=> L’ | FMAP’ | DATA’ | PHI’ | GEN’
/\ check-sat(PHI and PHI’) .

Behavior Configurations. We represent a group of “named” function arguments
id1 : arg1, id2 : arg2, . . . , idn : argn as a a multiset of behavior configuration
items of the form id1(arg1) id2(arg2) . . . idn(argn). For example, execTrans
takes a number of behavior configuration items, including port values feature,
data values data, constraints const, and so on. The auxiliary function addConst
adds a given constraint PHI’ to a behavior configuration.

sort BehaviorConf .
subsort BehaviorConfItem < BehaviorConf .
op none : -> BehaviorConf [ctor] .
op __ : BehaviorConf BehaviorConf -> BehaviorConf [ctor comm assoc id: none] .

sort BehaviorConfItem .
op const : BoolExp -> BehaviorConfItem [ctor] .
op feature : FeatureMap -> BehaviorConfItem [ctor] .
op data : DataValuation -> BehaviorConfItem [ctor] .
op prop : PropertyAssociation -> BehaviorConfItem [ctor] .
. . .

eq addConst(const(PHI) REST, PHI’) = const(PHI and PHI’) REST .

Feature Operations. Given a set of ports (for discrete components), the semantic
function readFeature builds a map from port identifiers to their current values,
removes the value from each input port, and returns a pair of the result ports and
the map. This function is defined in a tail-recursive style by using an auxiliary
function with extra arguments to carry intermediate results:

eq readFeature(PORTS) = readFeature(PORTS, none, empty) .
eq readFeature(none, PORTS, FMAP) = {PORTS, FMAP} .

A feature map built by readFeature has different feature map contents for
input and output ports, because a behavior annex expression p’fresh needs to
know whether the value of input port p is “fresh”. A feature map content of an
input port is given by a pair D : F of data content D and freshness flag F (where
D is also a pair E # B in which B indicates the presence of the value).

sort FeatureMapContent .
subsort DataContent < FeatureMapContent .
op _:_ : DataContent BoolExp -> FeatureMapContent [ctor] .

Consider a port P with a content E # B and a cached content E’ # B’. If the
content is present (i.e., B is true), P corresponds to the pair (E # B) : true in
the resulting map FMAP; otherwise, P corresponds to the pair (E’ # B’) : false

35

using the cached value. The resulting content can be compactly represented as
((B ? E : E’) # (B or B’)) using the conditional operator. Then, the cache
attribute is updated, and the content is set absent.

eq readFeature(< P : DataInPort | content : E # B, cache : E’ # B’ > PORTS,
PORTS’, FMAP)

= readFeature(PORTS,
< P : DataInPort | content : E # [false],

cache : (B ? E : E’) # (B or B’) > PORTS’,
insert(P, ((B ? E : E’) # (B or B’)) : B, FMAP)) .

Finally, each output port is related to E # [false] in the resulting map FMAP,
indicating ⊥ with the second item [false], because behavior transitions cannot
read a value from output ports.

eq readFeature(< P : DataOutPort | content : E # B > PORTS, PORTS’, FMAP)
= readFeature(PORTS, < P : DataOutPort | > PORTS’,

insert(P, E # [false], FMAP)) .

The semantic function writeFeature replaces the content of each output port
P by the corresponding content D’ in the map FMAP.

eq writeFeature(FMAP, PORTS) = writeFeature(FMAP, PORTS, none) .
eq writeFeature(((P |-> D’), FMAP),

< P : DataOutPort | content : D > PORTS, PORTS’)
= writeFeature(FMAP, PORTS, < P : DataOutPort | content : D’ > PORTS’) .
eq writeFeature(FMAP, PORTS, PORTS’) = PORTS PORTS’ [owise] .

Data Operations. Given data components, the semantic function readData builds
a map from each identifier to its value, and writeData updates the values of the
data subcomponents using a given map, defined as follows:

eq readData(COMPS) = readData(COMPS, empty) .
eq readData(< C : Data | value : D > COMPS, DATA)
= readData(COMPS, insert(C, D, DATA)) .
eq readData(none, DATA) = DATA .

eq writeData(DATA, COMPS) = writeData(DATA, COMPS, none) .
eq writeData((C |=> D’, DATA), < C : Data | value : D > COMPS, COMPS’)
= writeData(DATA, COMPS, COMPS’ < C : Data | value : D’ >) .
eq writeData(DATA, COMPS, COMPS’) = COMPS COMPS’ [owise] .

Executing Transitions. The behavior of the semantic operation execTrans is
defined with respect to behavior configurations as follows.

crl [trans]:
execTrans(location(SL) trans(TRS) tbound(s(N)) local(VAL) REST)

=>
execTStep(VAL, location(L’) trans(TRS) tbound(N)

36

addConst(execAction(ACT, local(VAL) REST), B and B’))
if (L -[GUARD]-> L’ ACT) ; TRS’ := TRS
/\ B := locConst(SL, L) /\ check-sat(B)
/\ B’ := guardConst(GUARD, outTrs(L, TRS’), local(VAL) REST) .

A transition L -[GUARD]-> L’ ACT is nondeterministically chosen from the set
TRS. The constraint B states that the source state L is the same as the current
state SL, and B’ indicates that the guard condition GUARD evaluates to true.
The operation execAction symbolically executes the actions ACT of the chosen
transition and returns a new behavior configuration.

If the next state L’ is a complete state, the operation ends with a result,
provided that the constraint PHI is satisfiable.10 Otherwise, execTrans is applied
again with the new configuration. The number of such iterations is limited by
the bound tbound (in the rule trans) to avoid infinite symbolic computation.

eq execTStep(VAL, location(L’) complete(LS) local(VAL’) REST)
= if L’ in LS then transResult(L’, REST)

else execTrans(location(L’) complete(LS) local(VAL) REST) fi .

ceq transResult(L, feature(FMAP) data(DATA) const(PHI) vargen(GEN) REST)
= L | FMAP | DATA | PHI | GEN if check-sat(PHI) .

The auxiliary functions are defined as follows. The function locConst returns
the constraint for two behavior states being equal, assuming that states are
encoded as terms loc(r) with a rational constant r. The functions guardConst
and allGuardsFalse return Boolean constraints obtained by guard conditions.
The function outTrs returns the set of transitions from a given state.

eq locConst(loc(R), loc(R’)) = R === R’ .

eq guardConst(on dispatch, TRS, REST) = [true] .
ceq guardConst(GE, TRS, REST) = E and B if E # B := eval(GE, REST) .
ceq guardConst(otherwise, TRS, REST)

= allGuardsFalse(TRS, REST) if noOwise(TRS) .

eq allGuardsFalse((L -[GUARD]-> L’ ACT) ; TRS, REST)
= not(guardConst(GUARD, empty, REST)) and allGuardsFalse(TRS, REST) .
eq allGuardsFalse(empty, REST) = [true] .

eq noOwise((L -[otherwise]-> L’ ACT) ; TRS) = false .
eq noOwise(TRS) = true [owise] .

eq outTrs(L, (L -[GE]-> L’ ACT) ; TRS) = (L -[GE]-> L’ ACT) ; outTrs(L,TRS) .
eq outTrs(L, TRS) = empty [owise] .

10 If PHI is unsatisfiable (i.e., when check-sat(PHI) returns false), the corresponding
execution is not realizable (e.g., due to some runtime errors like division by 0). In
this case, the execution path ends with a deadlock term with no sort.

37

Evaluating Expressions. The semantic function eval evaluates (syntactic) AADL
behavior expressions to (semantic) data content, given a behavior configuration
that contains symbolic expressions and constraints. By construction, when eval
evaluates exp to a data content e # b, the second item b indicates that all the
identifiers in exp are well defined in the given behavior configuration.

The following equations define the case of syntactic values (which are enclosed
by [[. . .]] for parsing purposes), where BCF denotes behavior configurations. We
only consider Boolean values, integers, and floating point numbers in Hybrid-
SynchAADL.

eq eval([[B:Bool]], BCF) = [B:Bool] # [true] .
eq eval([[I:Int]], BCF) = [I:Int] # [true] .
eq eval([[F:Float]], BCF) = [rat(F:Float)] # [true] .

The following equations define the cases for identifiers, namely, local variable
identifier VI, port identifier PI, data component identifier C, property identifier
PR, and a fresh expression for port PI.

eq eval(v[VI], local(VAL) REST) = VAL[VI] .
eq eval(f[PI], feature(FMAP) REST) = getData(FMAP[PI]) .
eq eval(c[C], data(DATA) REST) = DATA[C] .
eq eval(p[PR], prop(PROPS) REST) = eval(value(PROPS[PR]), REST) .
ceq eval(fresh(PI), feature(FMAP) REST) = B # B1 if E # B1 : B := FMAP[PI] .

The cases for the other expressions are defined by propagating eval to the
subexpressions. For example, the case of addition is defined as follows. The
second equation defines the addition of two data contents.

eq eval(AE1 + AE2, REST) = eval(AE1, REST) + eval(AE2, REST) .
eq (E1 # B1) + (E2 # B2) = (E1 + E2) # (B1 and B2) .

Executing Actions. The semantic operation execAction computes a behavior ac-
tion based on a given behavior configuration, and returns the resulting behavior
configuration. These behavior configurations contain symbolic expressions and
constraints, and represent (possibly infinite) sets of concrete configurations.

For example, the semantics of an assignment action id := exp, assigning the
evaluated value of exp to the identifier id , is defined as follows.

ceq execAction(v{VI} := AE, REST)
= local(insert(VI, E # [true], VAL)) addConst(REST, B)
if E # B := eval(AE,REST) .

ceq execAction(f{PI} := AE, REST)
= feature(insert(PI, E # [true], FMAP)) addConst(REST, B)
if E # B := eval(AE,REST) .

ceq execAction(c{C} := AE, REST)
= data(insert(C, E # [true], DATA)) addConst(REST, B)
if E # B := eval(AE,REST) .

38

For a conditional statement, the branch condition can evaluate to either
true or false, according to a given (concrete) behavior configuration. Therefore,
execAction produces both cases with different constraints. For example:

crl execAction(if (AE) AS end if, REST)
=> execAction(AS, addConst(REST, E and B))
if E # B := eval(AE, REST) .

crl execAction(if (AE) AS end if, REST)
=> addConst(REST, E and B)
if E # B := eval(not(AE), REST) .

For a loop statement, execAction produces both true and false cases for the
branch condition, where the number of loop iterations is limited by the bound
lbound to avoid infinite symbolic computation. For example:

crl execAction(while (AE) {AS}, lbound(s(N)) REST)
=> execAction({AS ; while (AE) {AS}}, lbound(N) addConst(REST, E and B))
if E # B := eval(AE, REST) .

crl execAction(while (AE) {AS}, REST) => addConst(REST, E and B)
if E # B := eval(AE, REST) .

Finally, for a sequence of actions {Action1 ; · · · ; Actionn}, each action in
the sequence is executed based on the execution results of the previous actions:

eq execAction({A ; ASQ}, REST) = execAction({ASQ}, execAction(A, REST)) .
eq execAction({A}, REST) = execAction(A, REST) .

6.7 Environment Behavior

In HybridSynchAADL, an environment component interacts with each of its
controllers in a single iteration. For example, consider an environment E that
is connected to two controllers C1 and C2. Figure 18 shows a timeline of their
interactions. Initially, the state variables of E have values ~v0 and change over
time according to E’s continuous dynamics. For i = 1, 2, environment E sends
the state values ~vn at time tsn to controller Cn, and receives Cn’s command αn
at time tan (and may also change its continuous dynamics by αn), according to
the sampling and actuating times of Cn.

The semantics of environment components cannot be directly specified as
synchronous composition. Indeed, the environment behavior is asynchronous,
since the order of “interaction events” in a single iteration (e.g., sampling(C1),
sampling(C2), response(C1), and response(C2) in Fig. 18) can lead to different
behaviors. The synchronous semantics requires that the interactions between
components must be delayed, but the interactions between environment and
controller components are immediate. Hence, any concrete semantics of Hybrid-
SynchAADL is not likely definable as synchronous composition.

39

E

C1

C2

~v1 α1

~v2 α2

0 tperiod

sampling(C1) sampling(C2)

α1

response(C1)

α2

response(C2)

ts1 ts2 ta1 ta2

~v0 ~v1
~v2

~vt

Fig. 18. Interactions between an environment E and two controllers C1 and C2

Previously, there are two approaches to deal with asynchronous interactions.
A typical way is to explicitly enumerate all possible interleavings of compo-
nents [40], but it can lead to state-space explosion. In Hybrid PALS [10], a
controller and an environment are combined into a single environment-restricted
machine, where a controller is a “flat” state machine. However, this technique is
not applicable to HybridSynchAADL, because a controller may include arbi-
trarily complex (hierarchical) subcomponents. Defining environment restrictions
for generic AADL components is thus very difficult.

In this paper we present an alternative approach to symbolically encode
asynchronous interactions in a modular way. We encode the values of input and
output ports at different sampling and actuating times into symbolic variables,
and perform executeStep of each component independently. The correspondence
between the input and output ports is then symbolically declared using equality
constraints. This relies on the fact that an environment interacts only once with
each of its controllers in a single iteration.

The semantics of environment components can be symbolically represented
as logical constraints to specify the environment behavior in one-step iteration.
Using this approach, the environment semantics can be defined as an operation
that builds such symbolic constraints:

(x1, . . . , xn) 7→ φ(x1, x2, . . . , xn)

where x1, . . . , xn are symbolic variables to completely represent all the necessary
information for the environment and its interactions. Observe that executeStep
for threads can also be interpreted in this way for symbolic inputs.

Therefore, the behavior of environment components is also specified in the
operation executeStep in our symbolic semantics. The operation executeStep
builds constrained objects with logical constraints to encode the environment
behavior. All information required for interaction with discrete controllers—
including the values of input and output ports at different sampling and ac-
tuating times—is encoded as a set of symbolic variables. The immediate com-
munication between environment and controller components is also encoded as
symbolic constraints. As a result, the semantics of ensemble components with
environment components is specified in the same way as in Section 6.5.

40

Iteration 1 2 3 4 . . .

Controller d1 d2 d3 d4 . . .

Input port p content · d1 d2 d3 . . .
envCache · x1 x2 x3 . . .

readEnvFeature
FMAP x1 x2 x3 x4 . . .
constraint true x1 = d1 x2 = d2 x3 = d3 . . .

Fig. 19. The behavior of readEnvFeature.

Executing Symbolic Steps. The following rule defines the behavior of environment
components. The function readEnvFeature returns a map from each input port
to its symbolic content, and writeEnvFeature updates the content of each output
port. These functions also return extra constraints to encode the environment
communication. The operation execEnv builds logical constraints to encode the
behavior of the environment in one-step iteration, and each of them is assigned to
the pattern L’ | FMAP’ | DATA’ | PHI’ | GEN2. The function check-sat then
invokes an SMT solver to check whether the generated constraint is satisfiable.

crl executeStep(
PHI || < C : Env | features : PORTS, subcomponents : COMPS,

connections : CONXS, properties : PROPS,
currMode : L, jumps : JUMPS,
flows : FLOWS, sampling : STS,
response : RTS, varGen : GEN >)

=>
(IPHI and PHI’ and OPHI) ||
< C : Env | features : PORTS’,

subcomponents : writeData(DATA’,COMPS),
currState : L’,
varGen : GEN’ >

if {PORTS1,FMAP,IPHI,GEN1} := readEnvFeature(PORTS, GEN)
/\ DATA := readData(COMPS)
/\ execEnv(feature(FMAP) data(DATA) prop(PROPS) vargen(GEN1) mode(L)

time([0]) jumps(JUMPS) flows(FLOWS) sampling(STS)
response(RTS) envcon(CONXS,PORTS) const([true]))

=> L’ | FMAP’ | DATA’ | PHI’ | GEN2
/\ {PORTS’,OPHI,GEN’} := writeEnvFeature(FMAP’, PORTS1, GEN2)
/\ check-sat(PHI and IPHI and PHI’ and OPHI) .

Environment Feature Operations. Given a set of environment ports, the function
readEnvFeature builds a map from each port identifier to a symbolic variable
denoting the value sent from the controller in the same iteration. As described in
Fig. 19, we use an extra attribute envCache that contains the symbolic variable
for the previous round. Suppose that a controller sends a data content di to an
input port p in the i-th iteration; the content of p is then di−1 at the beginning

41

Iteration 0 1 2 3 . . .

Environment FMAP d1 d2 d3 . . .
envCache x0 x1 x2 . . .

writeEnvFeature
content of PI x0 x1 x2 x3 . . .
constraint x0 = d1 x1 = d2 x2 = d3 . . .

Controller x0 x1 x2 . . .

Fig. 20. The behavior of writeEnvFeature.

of the i-th iteration. The function readEnvFeature relates the port identifier p
to a fresh variable xi, and generates the constraint xi−1 = di−1.

This function is defined by the following equations using an auxiliary function
with extra arguments to carry intermediate results. In the third equation, each
input port PI is related to a symbolic content V # BV with fresh variables V and
BV, the current content E # B and envCach E’ # B’ are declared to be identical
as a constraint, the envCach attribute is updated, and the content attribute
is set absent. In the last equation, each output port is related to E # [false],
indicating ⊥ with the second item [false].

eq readEnvFeature(PORTS, GEN)
= readEnvFeature(PORTS, none, empty, [true], GEN) .

eq readEnvFeature(none, PORTS, FMAP, PHI, GEN)
= {PORTS, FMAP, PHI, GEN} [owise] .

ceq readEnvFeature(< PI : EnvInPort | content : E # B,
envCache : E’ # B’ > PORTS, PORTS’,

FMAP, PHI, GEN)
= readEnvFeature(PORTS, PORTS’ < PI : EnvInPort | content : E # [false],

envCache : V # BV >,
insert(PI, V # BV : [true], FMAP),
PHI and E === E’ and B === B’, GEN2)

if {V, GEN1} := gen(GEN, type(E)) /\ {BV,GEN2} := gen(GEN1,Boolean) .

eq readEnvFeature(< PI : EnvOutPort | content : E # B > PORTS, PORTS’,
FMAP, PHI, GEN)

= readEnvFeature(PORTS, PORTS’ < PI : EnvOutPort | >,
insert(PI, E # [false], FMAP), PHI, GEN) .

The function writeFeature replaces the content of each output port P by a
symbolic variable and declares that the data content sent in the previous round
is identical to the current content in the map FMAP. Thus, the corresponding
input port of the controller receives the current content in the same iteration.
Similarly, we use envCache, containing the symbolic variable sent in the previous
round, to implement this behavior, as described in Fig. 20, where x0 denotes the
initial content. The function writeFeature is defined as follows.

42

eq writeEnvFeature(FMAP, PORTS, GEN)
= writeEnvFeature(PORTS, none, FMAP, [true], GEN) .

ceq writeEnvFeature(< PI : EnvOutPort | content : D,
envCache : E # B > PORTS, PORTS’,

FMAP, PHI, GEN)
= writeEnvFeature(PORTS, PORTS’ < PI : EnvOutPort | content : V # BV,

envCache : V # BV >,
FMAP, PHI and E === E’ and B === B’, GEN2)

if E’ # B’ := FMAP[PI]
/\ {V, GEN1} := gen(GEN, type(E)) /\ {BV,GEN2} := gen(GEN1,Boolean) .

eq writeEnvFeature(PORTS, PORTS’, FMAP, PHI, GEN)
= {PORTS PORTS’, PHI, GEN} [owise] .

Observe that the constraints for environment inputs in one iteration are built
by readEnvFeature in the next iteration. Therefore, executeStep on ensemble
components is slightly modified to check such constraints as follows:

crl executeStep(PHI || < C : Ensemble | >) => PHI’ || transferResults(OBJ’)
if OBJ := transferInputs(< C : Ensemble | >)
/\ propagateExec(PHI, OBJ) => PHI’ || OBJ’
/\ check-sat(PHI and PHI’ and finalConst(OBJ’)) .

eq finalConst(< C : Env | features : PORTS, varGen : GEN > COMPS)
= getConst(readEnvFeature(PORTS,GEN)) and finalConst(COMPS) .
eq finalConst(< C : Ensemble | > COMPS)
= finalAux(transferInputs(< C : Ensemble | >)) and finalConst(COMPS) .
eq finalAux(< C : Component | subcomponents : COMPS >) = finalConst(COMPS) .
eq finalConst(COMPS) = [true] [owise].

g(i) g(i+ 1)

0 2ε tperiod

en
v-
sa
mp

sampling(C1)

en
v-
re
sp

response(C1)

en
v-
sa
mp

sampling(C2)

en
v-
re
sp

response(C2)

t01 t01 ts1 ta1 ts2 ta2

~v0
~v1

~v2 ~vt

Fig. 21. The behavior of an environment interacting with two controllers.

Executing Environments. Figure 21 depicts the behavior of an environment that
interacts with two controllers C1 and C2. Let g : N → R≥0 denote the global
time g(i) at the beginning of the i-th period, where g(i + 1) − g(i) = tperiod .

43

The environment time frame is “shifted” to the left from the global time frame
[g(i), g(i + 1)] by a maximal clock skew ε > 0. Because each controller Cn,
n = 1, 2, runs according to its local clock, the period of Cn begins at any time
0 < t0n < 2ε, and its sampling and actuation happen according to the sampling
and actuating times of Cn with respect to t0n. That is, in Fig. 21, tsn − t0n and
tan − t0n denote the sampling and actuating times declared by Cn.

The semantics of environment components are specified using three rewrite
rules; env-cont for continuous state changes, env-samp for sampling operations,
and env-resp for actuation operations. These rules are defined using two seman-
tic operations; execEnv for the continuous behavior, and envStep for the discrete
behavior. Basically, our semantics alternatively applies the operations execEnv
and envStep to build the symbolic constraints for the environment behavior of
one iteration, given a symbolic behavior configuration.

The following rule env-cont specifies the behavior of an environment. It
performs a “continuous transition” from a state at time T to a state at time
T’, where T’ is given as a fresh symbolic variable, according to its continuous
dynamics. The constraint B states that the mode L for the continuous dynamics
FLOW is the same as the current mode SL. The function execFlow builds symbolic
values and constraints to encode the new environment states given by evolving
the environment by time T’ - T. Finally the function updateEnvData updates
the data subcomponents to have the symbolic values for time T’.

crl [env-cont]:
execEnv(time(T) mode(SL) vargen(GEN) REST)

=> envStep(time(T’) mode(L) vargen(GEN’) addConst(REST’, T <= T’ and B))
if flows((L FLOW) ; FLOWS) ECF’’ := ECF
/\ B := locConst(SL,L) /\ check-sat(B)
/\ {T’,GEN’} := gen(GEN,Real)
/\ DATA := execFlow(FLOW, T’ - T, REST)
/\ REST’ := updateEnvData(DATA, REST) .

The function execFlow computes the values of continuous dynamics for a
given input T. As mentioned, continuous dynamics in HybridSynchAADL are
specified using either ODEs or a set of continuous real functions. Currently, we
only consider the case of continuous real functions;11 a function of the form
C(VI) = AE over an input argument VI is evaluated using the function eval,
while T is assigned to the local variable identifier VI as follows:

eq execFlow([FUNCS], T, REST) = execFuncFlow(FUNCS, T, empty, REST) .

ceq execFuncFlow((C(VI) = AE) ; FUNCS, T, DATA, REST)
= execFuncFlow(FUNCS, T, insert(C, D, DATA), REST)
if D := eval(AE, local(VI |-> T # [true]) REST) .
eq execFuncFlow(empty, T, DATA, REST) = DATA .

11 If ODEs have closed-form solutions, we can define them as continuous functions. It
is possible to directly generate SMT constraints with ODEs, and solve them using
a specialized SMT solver, such as dReal [29]. Because dReal has not been integrated
with Maude, the current version of the semantics only supports continuous functions.

44

The function updateEnvData simply updates the behavior configuration item
data with the result DATA of applying execFlow.

eq updateEnvData((C |=> E # B, DATA), data(DATA’) REST)
= updateEnvData(DATA, data(insert(C, E # [true], DATA’)) addConst(REST,B)) .
eq updateEnvData(empty, REST) = REST .

After each continuous transition, the operation envStep is applied to perform
discrete operations, such as sampling and responding. If no more such discrete
operation remains, the current iteration of the environment ends with a result
(using the same function transResult for threads), with an assertion to state
that the end time T’ is the same as the period TimingProperties::Period.

ceq envStep(time(T) mode(L) sampling(empty) response(empty) prop(PROPS) REST)
= transResult(L, prop(PROPS) addConst(REST, B and (T === PER)))
if PER # B := eval(p[TimingProperties::Period], prop(PROPS)) .

Environment Sampling. The following rule env-samp specifies the behavior of
sampling operations. A controller C and its sampling time bound (lt , ut) are
first nondeterministically chosen in the left-hand side of the rule. The function
timeConst gives the constraint for the sampling time T with respect to the clock
skew and the sampling time bound. The function updateEnvFeature updates the
output ports connected to C with the corresponding state values.

crl [env-samp]:
envStep(time(T) sampling((C :(LT,UT), SIT)) REST)

=> execEnv(time(T) sampling(SIT) addConst(REST’,B))
if B := timeConst(T, LT, UT, REST)
/\ REST’ := updateEnvFeature(C, REST) .

As explained, because the period of controller C happens at any time between
0 and 2ε, the sampling happens between lt and ut + 2ε as follows.

ceq timeConst(T, LT, UT, prop(PROPS) REST)
= ([LT] <= T) and (T <= [UT] + [2] * SK) and B
if SK # B := eval(p[HybridSynchAADL::MaxClockDeviation], prop(PROPS)) .

The function updateEnvFeature updates the content of the output port PI
using the content of state variable CI, if there is an internal connection CI ==> PI
from CI to PI, provided that PI is connected to the controller C.

eq updateEnvFeature(C, envcon(CONXS,PORTS) REST)
= updateEnvFeature(CONXS, C, envcon(CONXS,PORTS) REST) .

ceq updateEnvFeature(CI ==> PI ; CONXS, C, data(DATA) feature(FMAP) REST)
= updateEnvFeature(CONXS, C, data(DATA) feature(FMAP’) REST)
if validTarget(PI, C, REST) /\ FMAP’ := insert(PI, DATA[CI], FMAP) .

eq updateEnvFeature(CONXS, C, REST) = REST [owise] .

45

eq validTarget(PI, C, envcon(CONXS,< PI : EnvPort | target : C > PORTS) REST)
= true .
eq validTarget(PI, C, REST) = false [owise] .

Environment Actuation. The rules with label env-resp specify the behavior of
actuation operations. There are two cases: either a mode change is triggered or
not. In the first rule, there is a mode transition from the current mode L, where
one of its triggers, PI, which is connected to the controller C (validTarget),
has received a content (isPortPresent). In the second rule, all input ports in
the mode transitions from L that are connected with C have received no content
(allPortsAbsent). For both cases, the constraint B is considered for the actuation
time T with respect to the actuation time bound (lt , gt) and the clock skew, and
all data subcomponents “connected” to C are updated (updateRespData).

crl [env-resp]:
envStep(time(T) mode(L) response((C :(LT,UT), SIT)) REST)

=> execEnv(time(T) mode(L’) response(SIT) addConst(REST’, B and B’))
if jumps(L -[PI,PRS]-> L’ ; JUMPS) REST’’ := REST
/\ validTarget(PI, C, REST)
/\ B’ := isPortPresent(PI, REST)
/\ B := timeConst(T, LT, UT, REST)
/\ REST’ := updateRespData(C, REST) .

crl [env-resp]:
envStep(time(T) mode(L) response((C :(LT,UT), SIT)) REST)

=> envStep(time(T) mode(L) response(SIT) addConst(REST’, B and B’))
if B’ := allPortsAbsent(L, C, REST)
/\ B := timeConst(T, LT, UT, REST)
/\ REST’ := updateRespData(C, REST) .

The function isPortPresent gives a constraint for the content of a given input
port PI having a value with the second item [true] (note that B’ is always [true]
by construction). The function allPortsAbsent returns a constraint stating that
all trigger input ports of each mode transition from mode L are not present if
they are connected to controller C.

eq isPortPresent(PI, feature((PI |-> (E # B : B’), FMAP)) REST) = B and B’ .

eq allPortsAbsent(L, C, jumps(JUMPS) REST)
= allPortsAbsent(L, JUMPS, C, REST, [true]) .

eq allPortsAbsent(L, (L -[PRS]-> L’) ; JUMPS, C, REST, PHI)
= allPortsAbsent(L, JUMPS, C ,REST, PHI and allPortsAbsent(PRS,C,REST)) .
eq allPortsAbsent(L, JUMPS, C, REST, PHI) = PHI [owise] .

ceq allPortsAbsent((PI, PRS), C, REST)
= not isPortPresent(PI,REST) and allPortsAbsent(PRS,C,REST)
if validTarget(PI, C, REST) .

eq allPortsAbsent(PRS, C, REST) = [true] [owise] .

46

The function updateRespData updates the content of the state variable CI by
the content of the input port PI, provided that there is an internal connection
PI =>> CI, PI is connected to the controller C, and PI has received a value. If
PI is not present (i.e., the second item B is false), CI is not updated (i.e., the
previous value is used). This is encoded using the conditional operator _?_:_.

eq updateRespData(C, envcon(CONXS,PORTS) feature(FMAP) REST)
= updateRespData(CONXS, C, FMAP, envcon(CONXS,PORTS) feature(FMAP) REST) .

ceq updateRespData((PI =>> CI) ; CONXS, C, FMAP, data(DATA) REST)
= updateRespData(CONXS, C, FMAP, data(DATA’) REST’)
if validTarget(PI, C, REST)
/\ E # B : B’’ := FMAP[PI]
/\ E’ # B’ := DATA[CI]
/\ DATA’ := insert(CI, (B ? E : E’) # (B or B’), DATA)
/\ REAT’ := addConst(REST, B’’ and (B or B’)) .

eq updateRespData(CONXS, C, FMAP, REST) = REST [owise] .

6.8 Merging Symbolic States

This section presents a state-space reduction method for our symbolic semantics
of HybridSynchAADL. Recall that the behavior of threads and environments
is specified by using two operations execTrans and execEnv. Even for one com-
ponent, executeStep can produce many different execution results. In particular,
for an environment interacting with n controllers, the rules in Section 6.7 can
generate O((2n)!/2n) different symbolic execution results, according to nonde-
terministic orders of sampling and actuating events. The modular encoding can
symbolically eliminate the interleavings of components, but cannot eliminate the
nondeterminism in a component.

To symbolically reduce the number of different execution results, we merge
two terms that are syntactically identical except for SMT subterms into one
constrained term. Let t(u1, . . . , un) be a term with SMT subterms u1, . . . , un,
and x1, . . . , xn be fresh SMT variables that do not appear in t. By definition, an
abstraction of built-ins for t, denoted by abs(t), is a constrained term

(x1 = u1 ∧ · · · ∧ xn = un) ‖ t(x1, . . . , xn),

and it is semantically equivalent to t (i.e., Jabs(t)K = Jtrue ‖ tK) [?].

Definition 1. Two abstractions of built-ins φ1 ‖ t1 and φ2 ‖ t2 are mergeable
iff there is a renaming substitution ρ with t1 = ρt2 (i.e., t1 and t2 are equivalent
up to renaming). In this case, the merged term is the constrained term

(φ1 ∨ ρφ2) ‖ t1.

For example, y = 2 + x ‖ f(y) and z = 3 ‖ f(z) can be merged into the
constrained term (y = 2 + x ∨ y = 3) ‖ f(y). We can easily show the following
proposition that ensures the soundness and completeness of our method.

47

Algorithm 1: Semantic operation f with state merging
Input: A constrained object φ ‖ t
Output: A set of constrained objects

1 post ←− {(φ′ ‖ t′) | f(φ ‖ t) φ′ ‖ t′};
2 p̂ost ←− {(φ′ ∧ ψ ‖ t′′) | (ψ ‖ t′′) = abs(t′), φ′ ‖ t′ ∈ post};
3 while ∃(ϕ1 ‖ t1), (ϕ2 ‖ t2) ∈ p̂ost with mergeable t1 and t2 do
4 ϕ ‖ u is a merged term of ϕ1 ‖ t1 and ϕ2 ‖ t2;
5 p̂ost ←− (p̂ost ∪ {ϕ ‖ u}) \ {ϕ1 ‖ t1, ϕ2 ‖ t2};
6 return p̂ost ;

Proposition 1. J(φ1 ∨ ρφ2) ‖ t1K = Jφ1 ‖ t1K ∪ Jφ2 ‖ t2K

Proof. By definition (Section 2), u ∈ J(φ1 ∨ ρφ2) ‖ t1K iff there is a substitution
θ such that u = θt1 and T |= θ(φ1 ∨ ρφ2). Because t1 = ρt2, u = θρt2. Also,
T |= θφ1 or T |= θρφ2. Thus, one of the following cases must hold: (i) u = θt1
and T |= θφ1, or (ii) u = θρt2 and T |= θρφ2. By definition, u ∈ Jφ1 ‖ t1K
or u ∈ Jρ(φ2 ‖ t2)K. Because ρ is a renaming substitution, u ∈ Jρ(φ2 ‖ t2)K iff
u ∈ Jφ2 ‖ t2K. Consequently, J(φ1 ∨ ρφ2) ‖ t1K = Jφ1 ‖ t1K ∪ Jφ2 ‖ t2K.

Algorithm 1 shows the new “merging” operation. It collects all the execu-
tion results by executeStep and merges all mergeable results. For our Hybrid-
SynchAADL semantics, by construction, Algorithm 1 always generates a single
“merged” result. Hence, the step rule for the entire system will yield a single
symbolic state for one synchronous step. Our method is inspired by state merg-
ing methods for symbolic execution [34], but has been generalized to deal with
arbitrary constrained objects in HybridSynchAADL.

In order to obtain abstractions of built-ins for two terms t1 and t2, we define
a function symAbs(t1, t2) that returns a triple (u, φ1, φ2), where φ1 ‖ u and
φ2 ‖ u are abstractions of t1 and t2, respectively, with the same set of fresh SMT
variables. (We do not need to perform extra renaming by using the same fresh
variables.) For example, symAbs(e1, e2) for two SMT expressions e1 and e2 is a
triple (x, x = e1, x = e2) with a fresh variable x, specified using the following
equation, where an extra arguments GEN is used to generate fresh variables.

ceq symAbs(E1, E2, GEN)
= {X, X === E1, X === E2, GEN’}
if {X,GEN’} := gen(GEN,type(E1)) /\ type(E1) == type(E2) .

We define symAbs for each “pattern” of terms, such as locations, data contents,
and data valuations, that can appear in the execution results of execTrans and
execEnv. To illustrate, consider locations of the form loc(r) and data contents
of the form e # b in our semantics. Using symAbs for SMT expressions described
above, we can easily define symAbs for these cases as follows.

ceq symAbs(loc(R), loc(R’), GEN) = {loc(MR), CS, CS’, GEN’}
if {MR, CS, CS’, GEN’} := symAbs(R, R’, GEN) .

48

ceq symAbs(E # B, E’ # B’, GEN)
= {ME # MB, CS1 and CS2, CS1’ and CS2’, GEN2}
if {ME, CS1, CS1’, GEN1} := symAbs(E, E’, GEN)
/\ {MB, CS2, CS2’, GEN2} := symAbs(B, B’, GEN1) .

The new operations execTransMerge and execEnvMerge find all the exe-
cution results obtained from execTrans and execEnv, respectively, and merge
them into a single term using Algorithm 1. The function collectResults uses
Maude’s reflective features to compute a ;;-separated list of execution results,
each of which has the form L | FMAP | DATA | PHI | GEN, as explained in Sec-
tions 6.6 and 6.7. The function symMerge syntactically merges those terms into
a single term, by means of the abstraction function symAbs for each pattern.

eq execTransMerge(BCF) = symMerge(collectResults(’execTrans[upTerm(BCF)])) .
eq execEnvMerge(ECF) = symMerge(collectResults(’execEnv[upTerm(ECF)])) .

ceq symMerge(BTRS) = symMerge(BTRS, GEN) if GEN := maxGen(BTRS) .
ceq symMerge((L | FMAP | DATA | CS | GEN) ;;

(L’ | FMAP’ | DATA’ | CS’ | GEN’) ;; BTRS, GEN0)
= symMerge((ML | MFMAP | MDATA | MCS | GEN3) ;; BTRS, GEN3)
if {ML, CS1,CS1’,GEN1} := symAbs(L, L’, GEN0)
/\ {MFMAP,CS2,CS2’,GEN2} := symAbs(FMAP, FMAP’, GEN1)
/\ {MDATA,CS3,CS3’,GEN3} := symAbs(DATA, DATA’, GEN2)
/\ MCS := (CS and CS1 and CS2 and CS3) or (CS’ and CS1’ and CS2’ and CS3’) .
eq symMerge(BTR, GEN0) = BTR .

6.9 Property Specification Language Semantics

The semantics of the property specification language is defined by means of equa-
tions in Maude. For a Boolean expression COND and a top-level component OBJ,
its value, written JCONDK OBJ, is true if the normalized expression normal(COND)
without component scopes evaluates to a data content b # b′, and both b and
b′ are true. (Recall that the second item b′ indicates whether all the identifiers
in COND have some values in OBJ.)

ceq [[COND]] OBJ = B and B’
if B # B’ := evalPS(normal(COND), OBJ) .

By definition, scoped expressions are equivalent to normalized expressions
without component scopes, where each identifier is fully qualified with the full
component path. This transformation is specified using the following equations,
where E and E’ denote expressions, PATH and PATH’ denote component paths,
VAR denotes a variable identifier, and nil denotes the empty path.

eq normal(E) = normal(nil, E) .
eq normal(PATH, PATH’ | E) = normal(PATH . PATH’, E) .
eq normal(PATH, VAR) = PATH . VAR .
eq normal(PATH, VALUE) = VALUE .

49

eq normal(PATH, E and E’) = normal(PATH, E) and normal(PATH, E’) .
eq normal(PATH, E or E’) = normal(PATH, E) or normal(PATH, E’) .
eq normal(PATH, E + E’) = normal(PATH, E) + normal(PATH, E’) .
...
eq normal(PATH, not(E)) = not(normal(PATH, E)) .

The function evalPS(E, COMPS) evaluates a normalized expression E to its
data content e # b, given a set of components COMPS. The following equations
specify evalPS, where BehComponent is a superclass of both classes Thread and
Env. Notice that evalPS uses eval as a subroutine, which is defined in Section 6.6
to evaluate expressions with respect to behavior configurations.

eq evalPS(C . PATH . VAR, < C : Ensemble | subcomponents : COMPS > REST)
= evalPS(PATH . VAR, COMPS) .

eq evalPS(C . VAR, < C : BehComponent | subcomponents : COMPS,
properties : PROPS > REST)

= eval(VAR, data(readData(COMPS)) prop(PROPS)) .

eq evalPS(VALUE, COMPS) = eval(VALUE, none) .

eq evalPS(E and E’, COMPS) = evalPS(E, COMPS) and evalPS(E’, COMPS) .
eq evalPS(E or E’, COMPS) = evalPS(E, COMPS) or evalPS(E’, COMPS) .
eq evalPS(E + E’, COMPS) = evalPS(E, COMPS) + evalPS(E’, COMPS) .
...
eq evalPS(not(E), COMPS) = not(evalPS(E, COMPS)) .

Reachability and invariant properties in our property specification language
correspond to Maude’s search command. A reachability property of the form
ϕinit ==> ϕgoal in time τbound corresponds to the following search command to
find its witness (i.e., the property holds if the search command finds a solution),
where Nbound is the quotient of τbound by the period of the model, and initState
denotes the term representation of the entire model:

search [Nbound] {([[ϕinit]] initState) || initState}
=>* {COND || OBJ}

such that check-sat(COND and finalConst(OBJ) and ([[ϕgoal]] OBJ)) .

Similarly, an invariant property of the form ϕinit ==> ϕinv in time τbound is
specified as the following search command to find its counterexample (i.e., the
property holds if the search command cannot find a solution):

search [Nbound] {([[ϕinit]] initState) || initState}
=>* {COND || OBJ}

such that check-sat(COND and finalConst(OBJ) and not([[ϕinv]] OBJ)) .

Example 9. Consider the requirement inv in Example 5. This requirement inv
corresponds to the following search command in Maude. The constant initState
is replaced by the term representation of the entire model, and inRan1 and inRan2
are replaced by the related Boolean expressions.

50

search [3] {([[abs(env1 . x - 15) < 3 and abs(env2 . x - 7) < 1}]] initState)
|| initState}

=>* {COND || OBJ} such that
check-sat(COND and not([[inRan1 and inRan2 and env1 . x > env2 . x]] OBJ)) .

7 Experimental Evaluation

This section evaluates the HybridSynchAADL tool by addressing the following
questions: (1) How effective is our tool compared to state-of-the-art CPS anal-
ysis tools? (2) How effective is our portfolio analysis method for finding bugs?
(3) How effective is our novel state merging technique for symbolic analysis?
(4) How effective is the Hybrid PALS methodology for reducing the complexity
of analyzing virtually synchronous CPSs?

To answer these questions, we have analyzed HybridSynchAADL models
of networked thermostat and water tank systems (adapted from [6,32,43]), and
rendezvous and formation control of distributed drones. Many variants of these
models are considered: different numbers of components, different sampling and
actuating times, different control logics, different continuous dynamics, etc.

We have run all experiments on a 16-core 32-thread Intel Xeon 2.8GHz with
256 GB memory. We use a specialized implementation of Maude connected with
Yices 2.6, where MCSAT is enabled for nonlinear arithmetic. The models and
the experimental results are available in [1].

7.1 Comparison with CPS Analysis Tools

We compare the performance of HybridSynchAADL’s symbolic analysis with
four reachability analysis tools for hybrid automata, HyComp [22], SpaceEx [28],
Flow* [21], and dReach [33]. For each model, we use two kinds of controllers
with different complexity, as most of the other tools time out for more complex
models. We consider two invariant properties for each model: Inv>, which holds,
and Inv⊥, which does not hold.

To use the other tools, we have “encoded” the synchronous designs of the
HybridSynchAADL models as networks of hybrid automata. Each component
is modeled as a hybrid automaton with three modes: starting a new round,
sampling, and controller transition/actuation. The behavior of a controller is
encoded as single jumps. We use flat hybrid automata (obtained by HYST [15])
for Flow* and dReach, which do not support networks of hybrid automata.

For example, a component of “Drone Rendezvous” with single-integrator dy-
namics is modeled as a hybrid automaton in Figure 22. It begins with mode
NewRound and local time t = 0. The value of x is sampled when a jump from
NewRound to Sampling happens, and a new velocity is set when a jump from
Sampling to Actuation happens. The behavior of the controller component is
specified as the condition

∧3
i=1((di=1 ≤ xin − xsampled ≤ di) → velx := ci),

51

Sampling

�̇� = 𝑣𝑒𝑙'
𝑡 ≤ 𝑢+,-./0 + 2𝜖

NewRound

�̇� = 𝑣𝑒𝑙'
𝑡 ≤ 𝑢+,-./0 + 2𝜖

Actuation

�̇� = 𝑣𝑒𝑙'
𝑡 ≤ 𝑝𝑒𝑟𝑖𝑜𝑑

𝑡 == 𝑝𝑒𝑟𝑖𝑜𝑑
𝑡 ≔ 0 ∧ 𝑥<=> ≔ 𝑥+,-./0?

𝑙+,-./0 ≤ 𝑡 ≤ 𝑢+,-./0 + 2𝜖
𝑥+,-./0? ≔ 𝑥

𝑙,@>=,>A<B ≤ 𝑡 ≤ 𝑢,@>=,>A<B + 2𝜖

C 𝑑ADE ≤ 𝑥AB − 𝑥+,-./0? ≤ 𝑑A → 𝑣𝑒𝑙' ≔ 𝑐A
I

AJE

𝑠𝑦𝑛𝑐ℎ

𝑡 ≔ 0

Fig. 22. A hybrid automaton component

where xin is an input variable, and ci and di, i = 1, 2, 3, are real constants. Fi-
nally, all components are synchronized when a jump from Actuation to NewRound
takes place, where the sampled value xsampled is available to the connected drone
component in the next iteration. Notice that this automaton models the behavior
of a HybridSynchAADL environment component in Sec 6.7

We measure the execution times for analyzing the invariant properties up to
bound 500 ms, with a timeout of 60 minutes. For SpaceEx, we use the PHAVer
scenario for linear dynamics, and the STC scenario 12 for nonlinear polynomial
dynamics. For Flow*, we use adaptive steps with minimum 0.001 and maximum
0.005, TM orders 1 (for single) and 2 (for double). We use the default precision
for dReach, and BMC for HyComp.

The experimental results are summarized in Table 1 and Table 2, as execution
times (seconds) over time bounds (B · 100 ms), with N the number of compo-
nents. The results for double-integrator dynamics (where control input is given
by acceleration instead of velocity) do not include HyComp, which does not sup-
port nonlinear polynomial dynamics. Table 1 shows the largest time bound and
time up to B = 5, for which the tool could prove the absence of counterexamples
for Inv>. Often, tools timed out T/O when trying to verify that Inv> holds up
to time bound 500. Table 2 shows the smallest bound for which the tool found
counterexamples for Inv⊥.

As seen, HybridSynchAADL outperforms the other tools in most cases, in
particular for complex models with larger N . Consider, e.g., “Rend (single)” with
complex control logic for N = 4. For Inv>, HybridSynchAADL needs 33.2
seconds for B = 5, whereas SpaceEx needs 470.2 seconds for B = 1 and timed out
for B > 1. For Inv⊥, HybridSynchAADL found a counterexample at B = 4
in 66.7 seconds, whereas all other tools timed out. Flow* occasionally found
(spurious) counterexamples at smaller bounds, because of over-approximation
by the Taylor model flowpipe construction.

12 For STC, we use the following parameters: octagonal template directions, and time
horizon 0.08. we also apply convex hull set aggregation.

52

Table 1. Comparison of HybridSynchAADL and the other tools for Inv>

Model Tool

Simplified Control Logic Complex Control Logic

N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

Time B Time B Time B Time B Time B Time B

R
en

d
(s
in
gl
e)

HSADDL 2.0 5 3.9 5 5.8 5 10.6 5 18.9 5 32.2 5
HyComp 0.8 5 4.0 5 17.2 5 6.24 5 108.8 5 150.2 5
SpaceEx 8.0 5 2230.3 3 4.5 1 1551.4 2 16.6 1 470.2 1
dReach 1382.7 3 107.1 1 T/O - 982.7 1 T/O - T/O -
Flow* 3552.8 4 2725.5 2 1205.2 1 1267.8 2 422.6 1 T/O -

Fo
rm

(s
in
gl
e)

HSAADL 3.0 5 7.3 5 7.9 5 17.3 5 63.5 5 67.0 5
HyComp 13.3 5 41.3 5 182.1 5 1586.1 5 652.2 4 844.4 4
SpaceEx 91.9 2 2.8 1 114.8 1 27.7 1 501.4 1 T/O -
dReach 139.0 1 T/O - T/O - 1939.0 1 T/O - T/O -
Flow* 1464.7 2 873.4 1 T/O - 749.9 1 T/O - T/O -

T
he

rm
os
ta
t HSAADL 2.7 5 4.7 5 7.8 5 3.9 5 7.0 5 11.8 5

HyComp 1.6 5 8.5 5 37.9 5 4.0 5 12.1 5 51.7 5
SpaceEx 2.3 5 696.4 3 34.5 1 4.7 5 98.9 2 2.5 1
dReach 341.6 3 57.5 1 T/O - 1341.6 2 T/O - T/O -
Flow* 3196.4 5 1240.7 2 977.7 1 318.8 4 1246.8 2 T/O -

W
at
er

T
an

k HSAADL 1.3 5 2.5 5 4.2 5 1.6 5 3.3 5 5.6 5
HyComp 0.5 5 6.0 5 37.1 5 4.3 5 14.9 5 98.8 5
SpaceEx 0.8 5 877.1 5 28.0 1 1.4 5 331.9 2 3181.8 2
dReach 1080.8 3 52.8 1 T/O 1 980.8 1 T/O - T/O -
Flow* 1070.1 3 96.4 1 T/O - 96.5 2 180.2 1 T/O -

R
en

d
(d
ou

bl
e) HSAADL 3.7 4 37.8 4 6.9 4 7.7 3 12.4 3 5.3 2

SpaceEx 1147.6 3 81.1 1 T/O - 58.8 1 T/O - T/O -
dReach 2156.2 3 274.3 1 T/O - 2156.2 1 T/O - T/O -
Flow* 232.5 2 230.1 1 T/O - T/O - T/O - T/O -

Fo
rm

(d
ou

bl
e) HSAADL 2.2 3 1.7 3 2.5 3 8.1 3 5.5 2 7.7 2

SpaceEx 70.8 1 T/O - T/O - T/O - T/O - T/O -
dReach 360.4 1 T/O - T/O - 3124.2 1 T/O - T/O -
Flow* 116.8 1 3411.5 1 T/O - T/O - T/O - T/O -

7.2 Analyzing Invariant Properties

We evaluate the power of HybridSynchAADL for analyzing bounded invari-
ants. We measure the time taken to find counterexamples, using HybridSynch-
AADL’s three analysis functions, in “faulty” models obtained by modifying the
sampling and actuating times. The following table summarizes the time param-
eters and invariant properties, with ε the maximal clock skew. All models have
period 100 (milliseconds). The timeout is 20 minutes.

53

Table 2. Comparison of HybridSynchAADL and the other tools for Inv⊥

Model Tool

Simplified Control Logic Complex Control Logic

N = 2 N = 3 N = 4 N = 2 N = 3 N = 4

Time B Time B Time B Time B Time B Time B

R
en

d
(s
in
gl
e)

HSADDL 2.4 3 4.2 3 5.9 3 84.8 4 17.5 3 66.7 4
HyComp 8.9 3 11.5 3 192.6 3 462.7 4 357.2 3 T/O -
SpaceEx 5.1 3 2676.6 3 T/O - T/O - T/O - T/O -
dReach T/O - T/O - T/O - T/O - T/O - T/O -
Flow* 167.3 3 380.4 2 838.0 3 T/O - 96.1 2 T/O -

Fo
rm

(s
in
gl
e)

HSAADL 15.5 4 2.5 2 5.2 2 33.2 3 10.5 2 88.5 3
HyComp T/O - 2.6 2 20.3 2 648.0 3 32.3 2 T/O -
SpaceEx T/O - T/O - T/O - T/O - T/O - T/O -
dReach T/O - T/O - T/O - T/O - T/O - T/O -
Flow* T/O - 45.3 1 291.3 2 T/O - 1034.2 1 T/O -

T
he

rm
os
ta
t HSAADL 7.6 5 15.3 5 10.7 4 9.6 5 19.0 5 15.7 4

HyComp 2.6 5 15.5 5 43.1 4 3.1 5 28.3 5 30.2 4
SpaceEx 2.2 5 T/O - T/O - 4.3 5 T/O - T/O -
dReach T/O - T/O - T/O - T/O - T/O - T/O -
Flow* 15.5 3 1718.1 4 T/O - 45.5 3 T/O - T/O -

W
at
er

T
an

k HSAADL 1.8 3 3.1 3 4.8 3 5.8 5 11.9 5 11.7 4
HyComp 0.1 3 1.9 3 4.2 3 3.6 5 61.8 5 1261.8 4
SpaceEx 0.2 3 74.4 3 T/O - 1.8 5 T/O - T/O -
dReach T/O - T/O - T/O - T/O - T/O - T/O -
Flow* 1.0 1 5.7 1 28.9 1 13.8 2 51.7 2 13.1 2

R
en

d
(d
ou

bl
e) HSAADL 1.4 2 16.3 2 2.8 2 6.7 2 11.4 2 16.7 2

SpaceEx 15.2 2 T/O - T/O - 881.6 2 T/O - T/O -
dReach T/O - T/O - T/O - T/O - T/O - T/O -
Flow* 2.2 2 25.4 2 2613.8 1 T/O - T/O - T/O -

Fo
rm

(d
ou

bl
e) HSAADL 2.2 2 2.7 2 3.8 2 15.4 2 20.4 2 26.5 2

SpaceEx T/O - T/O - T/O - T/O - T/O - T/O -
dReach T/O - T/O - T/O - T/O - T/O - T/O -
Flow* 14.0 2 1586.9 1 T/O - T/O - T/O - T/O -

Model Sampling Actuation ε Invariant property
Thermostat 20 ∼ 30 60 ∼ 70 5 temperatures are between 20 and 50
Water tank 30 ∼ 40 70 ∼ 80 5 water levels are above 30
Rendezvous 30 ∼ 50 60 ∼ 80 10 distance between drones greater than 0.5
Formation 30 ∼ 50 60 ∼ 80 10 distance between drones greater than 0.3

The experimental results are summarized in Fig. 23, as execution times (sec-
onds, log scale) over time bounds (ms), with N the number of components.
Empty shapes indicate that a counterexample is found, and filled circles indi-
cate that symbolic analysis terminates and reports no counterexample. Once
a counterexample is found for one bound T by symbolic analysis, the results
for larger bounds T ′ > T are exactly the same, since symbolic analysis uses a

54

breadth-first strategy. The execution time of portfolio analysis is the minimum
execution time of symbolic analysis and randomized simulation.

As expected, symbolic analysis is effective to find subtle counterexamples, and
randomized simulation is effective for finding obvious bugs. Since the injected
faults are caused by excessive sampling and actuating times, violations are easier
to find with a larger bound. Consider, e.g., “Formation” with single-integrator
dynamics for N = 4. Symbolic analysis found a counterexample for bound 300 in
98 seconds, while randomized simulation timed out. For bound 400, randomized
simulation found a counterexample in less than 12 seconds. This demonstrates
the usefulness of HybridSynchAADL’s portfolio analysis.

For double-integrator dynamics, symbolic analysis sometimes cannot find
a counterexample before timeout. This is caused by high-order nonlinear con-
straints generated by double-integrator dynamics. Consider double-integrator
“Formation” for N = 3. Symbolic analysis timed out for bounds greater than
100. Both single-integrator and double-integrator models involve nonlinear con-
straints, but double-integrator models give higher-order constraints that Yices2
cannot effectively deal with.

7.3 Effect of State Merging

We evaluate the effect of state merging for symbolic reachability analysis. We
have performed symbolic reachability analysis, with state merging and without
state merging, for generating all reachable symbolic states up to given bounds.13
In both cases, we measure the execution time, the size of accumulated SMT
formulas, the number of calls to the SMT solver (Yices2), and the number of
reachable symbolic states up to the bound. We set a timeout of 180 minutes.

The experimental results show that, despite the increased burden on the SMT
solver, the state-space reduction by state merging almost always significantly
improves the performance of symbolic analysis. Symbolic analysis with state
merging always generates one symbolic state for each step, whereas analysis
without merging may generate a huge number of symbolic states. E.g., for “Drone
rendezvous” with N = 3 and bound 100, symbolic analysis without merging
generates 17, 577 symbolic states in one synchronous step.

The reason is that symbolic analysis with state merging involves a much
smaller number of SMT calls and a much smaller size of accumulated SMT
constraints than those without state merging. For instance, consider “Drone ren-
dezvous” with single-integrator dynamics for N = 3 and bound 100. With state
merging, the size of the accumulated SMT constraints is about 57, 200 and the
number of SMT calls is 438. Without merging, the size of the constraints is about
38 million and the number of SMT calls is more than 260 thousand.

13 We use false for the reachability goal condition, and run the Maude search command
to find a symbolic state satisfying the goal. Since there exists no state satisfying false,
the search command enumerates all reachable state up to a bound.

55

10-1
100
101
102
103

T/O: Random

Portfolio
Symbolic
Random

Thermostat (N=2)

T/O: Random

Thermostat (N=3) Thermostat (N=4)

10-1
100
101
102
103

T/O: Random

Water (N=2)

T/O: Random

Water (N=3) Water (N=4)

10-1
100
101
102
103

T/O: Random

Rend Single (N=2) Rend Single (N=3) Rend Single (N=4)

10-1
100
101
102
103

T/O: Random

Form Single (N=2) Form Single (N=3) Form Single (N=4)

10-1
100
101
102
103

 100 200 300 400 500

Rend Double (N=2)

 100 200 300 400 500

Rend Double (N=3)

 100 200 300 400 500

Rend Double (N=4)

10-1
100
101
102
103

 100 200 300 400 500

Form Double (N=2)

 100 200 300 400 500

Form Double (N=3)

 100 200 300 400 500

Form Double (N=4)

Fig. 23. HybridSynchAADL portfolio analysis.

56

T2/
30

0

T3/
20

0

T4/
10

0

W
2/

30
0

W
3/

20
0

W
4/

10
0

RS2/
10

0

RS3/
10

0

RS4/
10

0

FS2/
10

0

FS3/
10

0

FS4/
10

0

RD2/
10

0

RD3/
10

0

RD4/
10

0

FD2/
10

0

FD3/
10

0

FD4/
10

0

100

102

104
T/O

T
im

e
(s

)

T2/
30

0

T3/
20

0

T4/
10

0

W
2/

30
0

W
3/

20
0

W
4/

10
0

RS2/
10

0

RS3/
10

0

RS4/
10

0

FS2/
10

0

FS3/
10

0

FS4/
10

0

RD2/
10

0

RD3/
10

0

RD4/
10

0

FD2/
10

0

FD3/
10

0

FD4/
10

0

101
103
105
107
T/O

F
or

m
ul

a
S

iz
e

T2/
30

0

T3/
20

0

T4/
10

0

W
2/

30
0

W
3/

20
0

W
4/

10
0

RS2/
10

0

RS3/
10

0

RS4/
10

0

FS2/
10

0

FS3/
10

0

FS4/
10

0

RD2/
10

0

RD3/
10

0

RD4/
10

0

FD2/
10

0

FD3/
10

0

FD4/
10

0
100

102

104

106

T/O

S

M
T

 C
al

l

T2/
30

0

T3/
20

0

T4/
10

0

W
2/

30
0

W
3/

20
0

W
4/

10
0

RS2/
10

0

RS3/
10

0

RS4/
10

0

FS2/
10

0

FS3/
10

0

FS4/
10

0

RD2/
10

0

RD3/
10

0

RD4/
10

0

FD2/
10

0

FD3/
10

0

FD4/
10

0

100

102

104

T/O

S

ym
bo

lic
 S

ta
te

s

Fig. 24. Symbolic analysis with merging and without merging.

T2/
30

0

T3/
20

0

W
2/

30
0

W
3/

20
0

RS2/
10

0

RS3/
10

0

FS2/
10

0

FS3/
10

0

RD2/
10

0

RD3/
10

0

FD2/
10

0

FD3/
10

0

100

102

104

T/O

T
im

e
(s

)

T2/
30

0

T3/
20

0

W
2/

30
0

W
3/

20
0

RS2/
10

0

RS3/
10

0

FS2/
10

0

FS3/
10

0

RD2/
10

0

RD3/
10

0

FD2/
10

0

FD3/
10

0

100

102

104

T/O

S

ym
bo

lic
 S

ta
te

s

Fig. 25. Comparing Hybrid PALS models and distributed models

7.4 Complexity Reduction by Hybrid PALS.

To gauge the complexity reduction obtained by Hybrid PALS, we have developed
a concrete asynchronous distributed semantics for HybridSynchAADL models
This semantics is adapted from the formal semantics for a subset of AADL in [40].
We measured the execution times for generating all reachable concrete states up
to bounds in distributed asynchronous models. We set a timeout of 360 minutes.

For the experiment, we consider highly simplified distributed models with
the following assumptions: (i) all clocks are perfectly synchronized; (ii) there
is no network delay; (iii) controllers (nondeterministically) choose one of the
predefined values for sampling and actuating times; and (iv) controllers take
zero time to perform transitions. We use floating-point arithmetic to compute
the continuous dynamics of the environments given by polynomials.

Figure 25 highlights some experimental results. We can observe that the num-
ber of reachable states can be extremely large, even for very simple distributed
models with the unrealistic assumptions. For T3/150 (Thermostat with N = 3
and bound 150), the number of reachable states is more than 2.3 million. It took
more than 1.8 hours to generate these states, whereas symbolic analysis needed
less than 11 second for the same case.

8 Related Work

Our tool can perform model checking of virtually synchronous CPSs with both
complex control programs and continuous behaviors (and clock skews, etc.),
whereas most formal tools are strong at analyzing either discrete or continuous
behaviors. The latter includes reachability analysis tools for hybrid automata

57

[16,22,28], which do not deal well with the “discrete complexity” (e.g., complex
control programs) of CPSs. HybridSynchAADL can also easily specify and
analyze continuous dynamics and imprecise local clocks at the same time.

Almost-Synchronous Systems. Our work is related to a broader body of work on
analyzing “almost-synchronous” systems, including quasi-synchrony [19, 20, 31,
35], GALS [30,41], approximate synchrony [24], time-triggered architectures [46,
47], virtual synchrony [10, 39], etc. A common theme of these approaches is to
simplify the design and verification of distributed real-time systems using various
synchronization methods. Our method makes it possible to model and verify
almost-synchronous systems with continuous behaviors, including of continuous
behaviors perturbed by clock skews, which are typically not considered in related
work. We also provide a convenient language and modeling environment for
modeling almost-synchronous CPSs.

Hybrid Systems in AADL. The Hybrid Annex for AADL [4] allows specifying
continuous behaviors in AADL, and its developers provide a theorem proving
support for proving properties in Hoare Logic combined with Duration Calcu-
lus [3]. Controller behaviors are defined in Hybrid CSP. Only a “synchronous”
subset without message delays is considered, and clock skews, etc., are not taken
into account. In contrast: we analyze models specified using AADL’s expressive
Behavior Annex, we provide automatic model checking analysis instead of in-
teractive theorem proving, and we consider (virtually synchronous) CPSs—with
clock skews, network delays, etc.

In [17], an Uncertainty Annex is added to the Hybrid Annex. Uncertain Hy-
brid AADL models can be transformed into networks of priced timed automata
that can then be subjected to statistical model checking using Uppaal-SMC
to evaluate the performance of the models. Another hybrid annex is proposed
in [42], and an AADL sublanguage, called AADL+, where continuous behav-
iors can be defined using stochastic differential equations is given in [36]. Both
approaches come with some kind of operational semantics and simulation, but
with no formal analysis support.

PALS and AADL. Synchronous AADL [9, 13] and its multi-rate extension [12]
support the modeling and analysis of synchronous PALS models of virtually syn-
chronous distributed real-time systems without continuous behaviors in AADL.
The explicit-state model checker Maude is used to analyze these models. In con-
trast, we analyze continuous behaviors for all possible sampling/actuation times.
This required us to leave the explicit-state world and use Maude with SMT solv-
ing. In this way, we can cover all possible behaviors, but are currently restricted
to reachability analysis.

Formal Analysis of Hybrid PALS Models. The paper [10] shows how some Hy-
brid PALS synchronous models with simple finite-state machine controllers—and
their bounded reachability problem—can be encoded as logical formulas and an-
alyzed by the dReal solver for nonlinear theories over the reals. However, there

58

is no tool support in [10], and it is difficult to model complex CPSs in SMT.
In contrast, this paper provides a tool for modeling Hybrid PALS models using
a well-known modeling standard. In addition, since we use Maude with SMT
solving instead of just SMT solving, we can also analyze systems with complex
control programs and data types.

9 Concluding Remarks

We have presented the HybridSynchAADL modeling language and analysis
tool for formally modeling and analyzing the synchronous designs—and, by the
Hybrid PALS equivalence, therefore also of the corresponding asynchronous dis-
tributed system with bounded clock skews, asynchronous communication, net-
work delays, and execution times—of virtually synchronous networks of hybrid
systems with potentially complex control programs in the well-known modeling
standard AADL. Our tool provides randomized simulation and symbolic reach-
ability analysis (using Maude combined with SMT), and is fully integrated into
the OSATE modeling environment for AADL. We have developed and imple-
mented a number of optimization techniques to improve the performance of the
analysis. We demonstrate the efficiency of our tool on a number of distributed
hybrid systems, including collaborating drones, and show that in most cases our
tool outperforms state-of-the-art hybrid systems reachability analysis tools.

Currently, HybridSynchAADL’s symbolic analysis is restricted to systems
with (nonlinear) polynomial continuous dynamics, because the underlying SMT
solver, Yices2, cannot deal with general classes of ODEs. We should therefore
integrate Maude with ODE solvers such as dReal [29] and Flow* [21] to analyze
systems whose continuous behaviors are given as (nonlinear) ODEs. Finally, we
can also extend HybridSynchAADL from single-rate to multi-rate controllers,
in a similar way as [7].

References

1. Supplementary material: HybridSynchAADL technical report, semantics, bench-
marks, and the tool, https://hybridsynchaadl.github.io/artifact/cav2021/

2. Abrial, J., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial Appli-
cations: Specifying and Programming the Steam Boiler Control, LNCS, vol. 1165.
Springer (1996)

3. Ahmad, E., Dong, Y., Wang, S., Zhan, N., Zou, L.: Adding formal meanings to
AADL with Hybrid Annex. In: Proc. FACS. LNCS, vol. 8997. Springer (2015)

4. Ahmad, E., Larson, B.R., Barrett, S.C., Zhan, N., Dong, Y.: Hybrid Annex: an
AADL extension for continuous behavior and cyber-physical interaction modeling.
In: Proc. ACM SIGAda annual conference on High integrity language technology
(HILT’14). ACM (2014)

5. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: Proc. RTSS. IEEE (2009)

6. Bae, K., Gao, S.: Modular SMT-based analysis of nonlinear hybrid systems. In:
Proc. FMCAD. pp. 180–187. IEEE (2017)

https://hybridsynchaadl.github.io/artifact/cav2021/

59

7. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multirate distributed
real-time systems. Science of Computer Programming 91, 3–44 (2014)

8. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous aadl and its
formal analysis in real-time maude. In: International Conference on Formal Engi-
neering Methods. pp. 651–667. Springer (2011)

9. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and
its formal analysis in Real-Time Maude. In: Proc. ICFEM’11. LNCS, vol. 6991.
Springer (2011)

10. Bae, K., Ölveczky, P.C., Kong, S., Gao, S., Clarke, E.M.: SMT-based analysis of
virtually synchronous distributed hybrid systems. In: Proc. HSCC. ACM (2016)

11. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of multi-
rate synchronous aadl. In: Proc. FM. Lecture Notes in Computer Science, vol. 8442,
pp. 94–109. Springer (2014)

12. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of Mul-
tirate Synchronous AADL. In: Proc. FM’14. LNCS, vol. 8442. Springer (2014)

13. Bae, K., Ölveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude
tool. In: Proc. FASE’12. LNCS, vol. 7212. Springer (2012)

14. Bae, K., Rocha, C.: Symbolic state space reduction with guarded terms for rewrit-
ing modulo SMT. Science of Computer Programming 178, 20–42 (2019)

15. Bak, S., Bogomolov, S., Johnson, T.T.: Hyst: a source transformation and transla-
tion tool for hybrid automaton models. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control. pp. 128–133 (2015)

16. Bak, S., Duggirala, P.S.: Hylaa: A tool for computing simulation-equivalent reach-
ability for linear systems. In: Proc. HSCC. pp. 173–178 (2017)

17. Bao, Y., Chen, M., Zhu, Q., Wei, T., Mallet, F., Zhou, T.: Quantitative per-
formance evaluation of uncertainty-aware Hybrid AADL designs using statistical
model checking. IEEE Transactions on CAD of Integrated Circuits and Systems
36(12), 1989–2002 (2017)

18. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: CAV. pp. 171–177. Springer (2011)

19. Baudart, G., Bourke, T., Pouzet, M.: Soundness of the quasi-synchronous abstrac-
tion. In: Proc. FMCAD. pp. 9–16. IEEE (2016)

20. Caspi, P., Mazuet, C., Paligot, N.R.: About the design of distributed control sys-
tems: The quasi-synchronous approach. In: International Conference on Computer
Safety, Reliability, and Security. Springer (2001)

21. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Proc. CAV. pp. 258–263. Springer (2013)

22. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: An SMT-based model
checker for hybrid systems. In: Proc. TACAS. LNCS, vol. 9035. Springer (2015)

23. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Martí-Oliet, N., Talcott,
C.: All About Maude – A High-Performance Logical Framework, Lecture Notes in
Computer Science, vol. 4350. Springer (2007)

24. Desai, A., Seshia, S.A., Qadeer, S., Broman, D., Eidson, J.C.: Approximate syn-
chrony: An abstraction for distributed almost-synchronous systems. In: Proc.
CAV’15. LNCS, vol. 9207. Springer (2015)

25. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV. LNCS, vol. 8559, pp.
737–744. Springer (July 2014)

26. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis and Design Language. Addison-Wesley (2012)

60

27. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.:
The AADL Behaviour Annex - experiments and roadmap. In: Proc. ICECCS’07.
IEEE (2007)

28. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Proc. CAV. LNCS, vol. 6806. Springer (2011)

29. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: Proc. CADE. Lecture Notes in Computer Science, vol. 7898. Springer
(2013)

30. Girault, A., Ménier, C.: Automatic production of globally asynchronous locally
synchronous systems. In: International Workshop on Embedded Software. pp. 266–
281. Springer (2002)

31. Halbwachs, N., Mandel, L.: Simulation and verification of asynchronous systems by
means of a synchronous model. In: Sixth International Conference on Application
of Concurrency to System Design (ACSD’06). pp. 3–14. IEEE (2006)

32. Henzinger, T.: The theory of hybrid automata. In: Verification of Digital and Hy-
brid Systems, NATO ASI Series, vol. 170, pp. 265–292. Springer (2000)

33. Kong, S., Gao, S., Chen, W., Clarke, E.M.: dReach: δ-reachability analysis for
hybrid systems. In: Proc. TACAS. Lecture Notes in Computer Science, vol. 7898.
Springer (2015)

34. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. Acm Sigplan Notices 47(6), 193–204 (2012)

35. Larrieu, R., Shankar, N.: A framework for high-assurance quasi-synchronous sys-
tems. In: 2014 Twelfth ACM/IEEE Conference on Formal Methods and Models
for Codesign (MEMOCODE). pp. 72–83. IEEE (2014)

36. Liu, J., Li, T., Ding, Z., Qian, Y., Sun, H., He, J.: AADL+: a simulation-based
methodology for cyber-physical systems. Frontiers Comput. Sci. 13(3), 516–538
(2019)

37. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

38. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. Theoretical Computer Science
451, 1–37 (2012)

39. Miller, S., Cofer, D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing logi-
cal synchrony in integrated modular avionics. In: Proc. IEEE/AIAA 28th Digital
Avionics Systems Conference. IEEE (2009)

40. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of be-
havioral aadl models in real-time maude. In: Formal Techniques for Distributed
Systems, pp. 47–62. Springer (2010)

41. Potop-Butucaru, D., Caillaud, B.: Correct-by-construction asynchronous imple-
mentation of modular synchronous specifications. Fundamenta Informaticae 78(1),
131–159 (2007)

42. Qian, Y., Liu, J., Chen, X.: Hybrid AADL: a sublanguage extension to AADL. In:
Proc. Internetware’13. ACM (2013)

43. Raisch, J., Klein, E., Meder, C., Itigin, A., O’Young, S.: Approximating automata
and discrete control for continuous systems — two examples from process control.
In: Hybrid systems V. pp. 279–303. Springer (1999)

44. Ren, W., Beard, R.W.: Distributed consensus in multi-vehicle cooperative control.
Springer (2008)

61

45. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. Journal of Logical and Algebraic Methods in Programming 86(1), 269–
297 (2017)

46. Rushby, J.: Systematic formal verification for fault-tolerant time-triggered algo-
rithms. IEEE Transactions on Software Engineering 25(5), 651–660 (1999)

47. Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincent, A., Caspi, P., Di Na-
tale, M.: Implementing synchronous models on loosely time triggered architectures.
IEEE Transactions on Computers 57(10), 1300–1314 (2008)

A HybridSynchAADL Models

This section shows the entire AADL codes of benchmark models. There are
six benchmark models: (1) drone rendezvous with single-integrator dynamics,
(2) drone rendezvous with double-integrator dynamics, (3) drone formation with
single-integrator dynamics, (4) drone formation with double-integrator dynam-
ics, (5) networked thermostat, and (6) networked watertank. The below AADL
codes represent the benchmark models for N = 4. You can easily get AADL
codes of the models for N = 2 and 3 by modifying the Top-Level component.

A.1 Drone Rendezvous with Single-Integrator Dynamics

--- Top-Level component
package FourDronesSystem
public

with Drone;
with RefDrone;
with Data_Model;
with Hybrid_SynchAADL;

system FourDronesSystem
properties

Hybrid_SynchAADL::Synchronous => true;
Hybrid_SynchAADL::Max_Clock_Deviation => 5ms;
Period => 100ms;
Classifier_Substitution_Rule => Type_Extension;

end FourDronesSystem;

system implementation FourDronesSystem.revu1D
subcomponents

drone1: system Drone::RevuDrone.impl;
drone2: system Drone::RevuDrone.impl;
drone3: system Drone::RevuDrone.impl;
drone4: system Drone::RevuDrone.impl;

connections
d12x: port drone1.outX -> drone2.inX;
d23x: port drone2.outX -> drone3.inX;
d34x: port drone3.outX -> drone4.inX;

62

d41x: port drone4.outX -> drone1.inX;
properties

Data_Model::Initial_Value => ("param") applies to
drone1.environment.x, drone2.environment.x,
drone3.environment.x, drone4.environment.x;

Data_Model::Initial_Value => ("0") applies to
drone1.environment.dotx, drone2.environment.dotx,
drone3.environment.dotx, drone4.environment.dotx;

Timing => Delayed applies to
d12x, d23x, d34x, d41x;

Hybrid_SynchAADL::Sampling_Time => 20ms .. 30ms applies to
drone1.drone, drone2.drone, drone3.drone, drone4.drone;

Hybrid_SynchAADL::Response_Time => 60ms .. 80ms applies to
drone1.drone, drone2.drone, drone3.drone, drone4.drone;

end FourDronesSystem.revu1D;

--- There is additional data subcomponents in Drone component for the y-axis.
--- You need to connect those components and initialize them.
system implementation FourDronesSystem.revu2D

extends FourDronesSystem.revu1D
subcomponents

drone1: refined to system Drone::RevuDrone2D.impl;
drone2: refined to system Drone::RevuDrone2D.impl;
drone3: refined to system Drone::RevuDrone2D.impl;
drone4: refined to system Drone::RevuDrone2D.impl;

connections
d12y: port drone1.outY -> drone2.inY;
d23y: port drone2.outY -> drone3.inY;
d34y: port drone3.outY -> drone4.inY;
d41y: port drone4.outY -> drone1.inY;

properties
Data_Model::Initial_Value => ("param") applies to

drone1.environment.y, drone2.environment.y,
drone3.environment.y, drone4.environment.y;

Data_Model::Initial_Value => ("0") applies to
drone1.environment.doty, drone2.environment.doty,
drone3.environment.doty, drone4.environment.doty;

Timing => Delayed applies to
d12y, d23y, d34y, d41y;

end FourDronesSystem.revu2D;
end FourDronesSystem;

--- Drone component
package Drone
public

with Environment;

63

with Base_Types;
with Data_Model;
with DroneControl;

system RevuDrone
features

inX: in data port Base_Types::Float;
outX: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
end RevuDrone;
system implementation RevuDrone.impl
subcomponents

drone: system DroneControl::RevuDroneControl.impl;
environment: system Environment::Environment.impl;

connections
C1: port drone.outX -> outX;
C2: port inX -> drone.inX;
C3: port drone.velX -> environment.velX;
C4: port environment.currX -> drone.currX;

end RevuDrone.impl;

system RevuDrone2D extends RevuDrone
features

inY: in data port Base_Types::Float;
outY: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
properties

Classifier_Substitution_Rule => Type_Extension;
end RevuDrone2D;
system implementation RevuDrone2D.impl extends RevuDrone.impl

subcomponents
drone: refined to system DroneControl::RevuDrone2DControl.impl;
environment: refined to system Environment::Environment2D.impl;

connections
C5: port drone.outY -> outY;
C6: port inY -> drone.inY;
C7: port drone.velY -> environment.velY;
C8: port environment.currY -> drone.currY;

end RevuDrone2D.impl;

end Drone;

--- Controller component
package DroneControl
public

with Base_Types;
with DroneSpec;
with Data_Model;

system RevuDroneControl

64

features
currX: in data port Base_Types::Float;
inX: in data port Base_Types::Float;
outX : out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
velX : out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
end RevuDroneControl;
system implementation RevuDroneControl.impl
subcomponents

droneProc: process RevuDroneControlProc.impl;
connections

C1: port currX -> droneProc.currX;
C2: port inX -> droneProc.inX;
C3: port droneProc.velX -> velX;
C4: port droneProc.outX -> outX;

end RevuDroneControl.impl;

system RevuDrone2DControl extends RevuDroneControl
features

currY : in data port Base_Types::Float;
inY : in data port Base_Types::Float;
outY : out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
velY : out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
properties

Classifier_Substitution_Rule => Type_Extension;
end RevuDrone2DControl;
system implementation RevuDrone2DControl.impl extends RevuDroneControl.impl
subcomponents

droneProc: refined to process RevuDrone2DControlProc.impl;
connections

C5: port currY -> droneProc.currY;
C6: port inY -> droneProc.inY;
C7: port droneProc.velY -> velY;
C8: port droneProc.outY -> outY;

end RevuDrone2DControl.impl;

process RevuDroneControlProc
features

currX: in data port Base_Types::Float;
inX: in data port Base_Types::Float;
outX : out data port Base_Types::Float;
velX : out data port Base_Types::Float;

end RevuDroneControlProc;
process implementation RevuDroneControlProc.impl
subcomponents

65

droneThread: thread RevuDroneControlThread.impl;
connections

C1: port currX -> droneThread.currX;
C2: port inX -> droneThread.inX;
C3: port droneThread.velX -> velX;
C4: port droneThread.outX -> outX;

end RevuDroneControlProc.impl;

process RevuDrone2DControlProc extends RevuDroneControlProc
features

currY: in data port Base_Types::Float;
inY: in data port Base_Types::Float;
outY : out data port Base_Types::Float;
velY : out data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end RevuDrone2DControlProc;
process implementation RevuDrone2DControlProc.impl

extends RevuDroneControlProc.impl
subcomponents

droneThread: refined to thread RevuDrone2DControlThread.impl;
connections

C5: port currY -> droneThread.currY;
C6: port inY -> droneThread.inY;
C7: port droneThread.velY -> velY;
C8: port droneThread.outY -> outY;

end RevuDrone2DControlProc.impl;

thread RevuDroneControlThread
features

currX: in data port Base_Types::Float;
inX: in data port Base_Types::Float;
outX : out data port Base_Types::Float;
velX : out data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end RevuDroneControlThread;
thread implementation RevuDroneControlThread.impl
annex behavior_specification {**

variables
nx : Base_Types::Float;

states
init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[abs(currX - inX) < 0.1]-> output {

velX := 0
};

66

exec -[otherwise]-> output {
nx := - #DroneSpec::A * (currX - inX);
if (nx > 1) velX := 2
elsif (nx > -0.1) velX := 0
else velX := -2
end if

};
output -[]-> init {

outX := currX
};

**};
end RevuDroneControlThread.impl;

--- RevuDrone thread with complex control logic has 5 transtions for each axis.
thread RevuDrone2DControlThread extends RevuDroneControlThread

features
currY: in data port Base_Types::Float;
inY: in data port Base_Types::Float;
outY : out data port Base_Types::Float;
velY : out data port Base_Types::Float;

end RevuDrone2DControlThread;
thread implementation RevuDrone2DControlThread.impl

extends RevuDroneControlThread.impl
annex behavior_specification {**

variables
nx : Base_Types::Float;
ny : Base_Types::Float;

states
init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[abs(currX - inX) < 0.1 and abs(currY - inY) < 0.1]-> output {

velX := 0; velY := 0
};
exec -[otherwise]-> output {

nx := - #DroneSpec::A * (currX - inX);
if (nx > 1) velX := 2
elsif (nx > 0.1) velX := 1
elsif (nx > 0) velX := 0
elsif (nx > -0.1) velX := -1
else velX := -2
end if;
ny := - #DroneSpec::A * (currY - inY);
if (ny > 1) velY := 2
elsif (ny > 0.1) velY := 1
elsif (ny > 0) velY := 0
elsif (ny > -0.1) velY := -1
else velY := -2
end if;

67

};
output -[]-> init {

outX := currX;
outY := currY

};
**};

end RevuDrone2DControlThread.impl;

--- Environment component
package Environment
public

with Hybrid_SynchAADL;
with Base_Types;
with Data_Model;

system Environment
features

currX : out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

velX : in data port Base_Types::Float;
properties

Hybrid_SynchAADL::isEnvironment => true;
end Environment;
system implementation Environment.impl

subcomponents
x : data Base_Types::Float;
dotx : data Base_Types::Float;

connections
C1: port velX -> dotx;
C2: port x -> currX;

properties
Hybrid_SynchAADL::ContinuousDynamics =>
"x(t) = ((0.001) * dotx * t) + x(0);";

end Environment.impl;

system Environment2D extends Environment
features

currY : out data port Base_Types::Float;
velY : in data port Base_Types::Float;

end Environment2D;
system implementation Environment2D.impl extends Environment.impl

subcomponents
y : data Base_Types::Float;
doty : data Base_Types::Float;

connections
C3: port velY -> doty;
C4: port y -> currY;

properties
Hybrid_SynchAADL::ContinuousDynamics =>
"x(t) = ((0.001) * dotx * t) + x(0);

68

y(t) = ((0.001) * dotx * t) + y(0);";
end Environment2D.impl;
end Environment;

A.2 Drone Formation with Single-Integrator Dynamics

--- Top-Level component
package FourDronesSystem
public

with Drone;
with RefDrone;
with Data_Model;
with Hybrid_SynchAADL;

system FourDronesSystem
properties

Hybrid_SynchAADL::Synchronous => true;
Hybrid_SynchAADL::Max_Clock_Deviation => 5ms;
Period => 100ms;
Classifier_Substitution_Rule => Type_Extension;

end FourDronesSystem;

system implementation FourDronesSystem.form1D
extends FourDronesSystem.revu1D

--- Because drone formation extends drone rendezvous,
it needs to only refine four drone subcomponents.

--- Unlike drone rendezvous, drone formation has a reference drone
--- The other drones move along with the reference drone.
subcomponents

drone1: refined to system Drone::FormDrone.impl;
drone2: refined to system Drone::FormDrone.impl;
drone3: refined to system Drone::FormDrone.impl;
drone4: refined to system Drone::FormDrone.impl;
refDrone: system RefDrone::RefDroneControl.formation;

connections
r1x: port refDrone.outX -> drone1.refX;
r2x: port refDrone.outX -> drone2.refX;
r3x: port refDrone.outX -> drone3.refX;
r4x: port refDrone.outX -> drone4.refX;

properties
Data_Model::Initial_Value => ("-0.5") applies to

drone1.drone.droneProc.droneThread.offsetX,
drone3.drone.droneProc.droneThread.offsetX;

Data_Model::Initial_Value => ("0") applies to
drone2.drone.droneProc.droneThread.offsetX,
drone4.drone.droneProc.droneThread.offsetX;

Data_Model::Initial_Value => ("param") applies to
refDrone.env.x;

69

Timing => Delayed applies to
r1x, r2x, r3x, r4x;

Hybrid_SynchAADL::Sampling_Time => 20ms .. 30ms
applies to refDrone.refDrone;

Hybrid_SynchAADL::Response_Time => 60ms .. 80ms
applies to refDrone.refDrone;

end FourDronesSystem.form1D;

system implementation FourDronesSystem.form2D
extends FourDronesSystem.revu2D

subcomponents
drone1: refined to system Drone::FormDrone2D.impl;
drone2: refined to system Drone::FormDrone2D.impl;
drone3: refined to system Drone::FormDrone2D.impl;
drone4: refined to system Drone::FormDrone2D.impl;
refDrone: system RefDrone::RefDrone2DControl.formation;

connections
r1y: port refDrone.outY -> drone1.refY;
r2y: port refDrone.outY -> drone2.refY;
r3y: port refDrone.outY -> drone3.refY;
r4y: port refDrone.outY -> drone4.refY;

properties
Data_Model::Initial_Value => ("0.5") applies to

drone1.drone.droneProc.droneThread.offsetY,
drone2.drone.droneProc.droneThread.offsetY;

Data_Model::Initial_Value => ("-0.5") applies to
drone1.drone.droneProc.droneThread.offsetX,
drone3.drone.droneProc.droneThread.offsetX;

Data_Model::Initial_Value => ("0") applies to
drone2.drone.droneProc.droneThread.offsetX,
drone3.drone.droneProc.droneThread.offsetY,
drone4.drone.droneProc.droneThread.offsetX,
drone4.drone.droneProc.droneThread.offsetY;

Data_Model::Initial_Value => ("param") applies to
refDrone.env.x;

Timing => Delayed applies to
r1x, r2x, r3x, r4x, r1y, r2y, r3y, r4y;

Hybrid_SynchAADL::Sampling_Time => 20ms .. 30ms
applies to refDrone.refDrone;

Hybrid_SynchAADL::Response_Time => 60ms .. 80ms
applies to refDrone.refDrone;

end FourDronesSystem.form2D;

70

end FourDronesSystem;

--- Drone component
--- Each drone component uses the inherited environment component

from drone rendezouvs component
package Drone
public

with Environment;
with Base_Types;
with Data_Model;
with DroneControl;

system FormDrone extends RevuDrone
features

refX: in data port Base_Types::Float;
end FormDrone;
system implementation FormDrone.impl extends RevuDrone.impl

subcomponents
drone: refined to system DroneControl::FormDroneControl.impl;

connections
C5: port refX -> drone.refX;

end FormDrone.impl;

system FormDrone2D extends RevuDrone2D
features

refX: in data port Base_Types::Float;
refY: in data port Base_Types::Float;

end FormDrone2D;
system implementation FormDrone2D.impl extends RevuDrone2D.impl

subcomponents
drone: refined to system DroneControl::FormDrone2DControl.impl;

connections
C9: port refX -> drone.refX;
C10: port refY -> drone.refY;

end FormDrone2D.impl;
end Drone;

--- Because drone formation extends drone rendezvous,
You need to connect ports between the reference drone and the original drone

package DroneControl
public

with Base_Types;
with DroneSpec;
with Data_Model;

system FormDroneControl extends RevuDroneControl
features

refX: in data port Base_Types::Float;
properties

Classifier_Substitution_Rule => Type_Extension;

71

end FormDroneControl;
system implementation FormDroneControl.impl extends RevuDroneControl.impl

subcomponents
droneProc: refined to process FormDroneControlProc.impl;

connections
C5: port refX -> droneProc.refX;

end FormDroneControl.impl;

system FormDrone2DControl extends RevuDrone2DControl
features

refX: in data port Base_Types::Float;
refY: in data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end FormDrone2DControl;
system implementation FormDrone2DControl.impl

extends RevuDrone2DControl.impl
subcomponents

droneProc: refined to process FormDrone2DControlProc.impl;
connections

C9: port refX -> droneProc.refX;
C10: port refY -> droneProc.refY;

end FormDrone2DControl.impl;

process FormDroneControlProc extends RevuDroneControlProc
features

refX: in data port Base_Types::Float;
properties

Classifier_Substitution_Rule => Type_Extension;
end FormDroneControlProc;
process implementation FormDroneControlProc.impl

extends RevuDroneControlProc.impl
subcomponents

droneThread: refined to thread FormDroneControlThread.impl;
connections

C5: port refX -> droneThread.refX;
end FormDroneControlProc.impl;

process FormDrone2DControlProc extends RevuDrone2DControlProc
features

refX: in data port Base_Types::Float;
refY: in data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end FormDrone2DControlProc;
process implementation FormDrone2DControlProc.impl

extends RevuDrone2DControlProc.impl

72

subcomponents
droneThread: refined to thread FormDrone2DControlThread.impl;

connections
C9: port refX -> droneThread.refX;
C10: port refY -> droneThread.refY;

end FormDrone2DControlProc.impl;

thread FormDroneControlThread extends RevuDroneControlThread
features

refX: in data port Base_Types::Float;
properties

Dispatch_Protocol => Periodic;
end FormDroneControlThread;
thread implementation FormDroneControlThread.impl

extends RevuDroneControlThread.impl
subcomponents

offsetX: data Base_Types::Float;
refX0: data Base_Types::Float {Data_Model::Initial_Value => ("0");};

annex behavior_specification {**
variables

nx, refvX : Base_Types::Float;
states

init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[abs(currX - inX) < 0.1]-> output {

velX := 0
};
exec -[otherwise]-> output {

refvX := (refX-refX0);
nx := refvX - #DroneSpec::alpha * (currX - offsetX - refX)

- #DroneSpec::A * (currX - offsetX - inX);
if (nx > 1) velX := 2
elsif (nx > -0.5) velX := 0
else velX := -2
end if

};
output -[]-> init {

outX := currX - offsetX;
refX0 := refX

};
**};
end FormDroneControlThread.impl;

thread FormDrone2DControlThread extends RevuDrone2DControlThread
features

refX: in data port Base_Types::Float;

73

refY: in data port Base_Types::Float;
properties

Dispatch_Protocol => Periodic;
end FormDrone2DControlThread;
thread implementation FormDrone2DControlThread.impl

extends RevuDrone2DControlThread.impl
subcomponents

offsetX: data Base_Types::Float;
offsetY: data Base_Types::Float;
refX0: data Base_Types::Float {Data_Model::Initial_Value => ("0");};
refY0: data Base_Types::Float {Data_Model::Initial_Value => ("0");};

annex behavior_specification {**
variables

nx, refvX : Base_Types::Float;
ny, refvY : Base_Types::Float;

states
init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[abs(currX - inX) < 0.1 and abs(currY - inY) < 0.1]-> output {

velX := 0;
velY := 0

};
exec -[otherwise]-> output {

refvX := (refX-refX0);
nx := refvX - #DroneSpec::alpha * (currX - offsetX - refX)

- #DroneSpec::A * (currX - offsetX - inX);
refvY := (refX-refX0);
ny := refvX - #DroneSpec::alpha * (currY - offsetY - refY)

- #DroneSpec::A * (currY - offsetY - inY);
if (nx > 1) velX := 2
elsif (nx > 0.5) velX := 1
elsif (nx > 0) velX := 0
elsif (nx > -0.5) velX := -1
else velX := -2
end if;
if (ny > 1) velY := 2
elsif (ny > 0.5) velY := 1
elsif (ny > 0) velY := 0
elsif (ny > -0.5) velY := -1
else velY := -2
end if

};
output -[]-> init {

outX := currX - offsetX;
refX0 := refX;
outY := currY - offsetY;
refY0 := refY

};

74

**};
end FormDrone2DControlThread.impl;

end DroneControl;

--- For drone formation, it needs to declare reference drone component
for other drones to follow

package RefDrone
public

with Base_Types;
with Environment;
with Data_Model;

system RefDroneControl
features

outX: out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

end RefDroneControl;
system implementation RefDroneControl.formation

subcomponents
refDrone: system RefDrone.formation;
env: system Environment::Environment.impl;

connections
C1: port refDrone.velX -> env.velX;
C2: port env.currX -> refDrone.currX;
C3: port refDrone.outX -> outX;

end RefDroneControl.formation;

system RefDrone2DControl extends RefDroneControl
features

outY: out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

properties
Classifier_Substitution_Rule => Type_Extension;

end RefDrone2DControl;
system implementation RefDrone2DControl.formation

extends RefDroneControl.formation
subcomponents

refDrone: refined to system RefDrone2D.formation;
env: refined to system Environment::Environment2D.impl;

connections
C4: port refDrone.velY -> env.velY;
C5: port env.currY -> refDrone.currY;
C6: port refDrone.outY -> outY;

end RefDrone2DControl.formation;

system RefDrone
features

velX: out data port Base_Types::Float;

75

outX : out data port Base_Types::Float;
currX: in data port Base_Types::Float;

end refDrone;
system implementation RefDrone.formation
subcomponents

refProc: process refProc.formation;
connections

C1: port refProc.velX -> velX;
C2: port currX -> refProc.currX;
C3: port refProc.outX -> outX;

end RefDrone.formation;

system RefDrone2D extends RefDrone
features

velY : out data port Base_Types::Float;
outY : out data port Base_Types::Float;
currY : in data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end RefDrone2D;
system implementation RefDrone2D.formation extends RefDrone.formation

subcomponents
refProc: refined to process RefProc2D.formation;

connections
C4: port refProc.velY -> velY;
C5: port currY -> refProc.currY;
C6: port refProc.outY -> outY;

end RefDrone2D.formation;

process RefProc
features

velX: out data port Base_Types::Float;
outX : out data port Base_Types::Float;
currX: in data port Base_Types::Float;

end RefProc;
process implementation RefProc.formation

subcomponents
refThread: thread RefThread.formation;

connections
C1: port refThread.velX -> velX;
C2: port currX -> refThread.currX;
C3: port refThread.outX -> outX;

end RefProc.formation;

process RefProc2D extends RefProc
features

velY: out data port Base_Types::Float;
outY : out data port Base_Types::Float;

76

currY: in data port Base_Types::Float;
properties

Classifier_Substitution_Rule => Type_Extension;
end RefProc2D;
process implementation RefProc2D.formation

extends RefProc.formation
subcomponents

refThread: refined to thread RefThread2D.formation;
connections

C4: port refThread.velY -> velY;
C5: port currY -> refThread.currY;
C6: port refThread.outY -> outY;

end RefProc2D.formation;

thread RefThread
features

velX: out data port Base_Types::Float;
outX : out data port Base_Types::Float;
currX: in data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end RefThread;
thread implementation RefThread.formation

subcomponents
nx : data Base_Types::Float

{Data_Model::Initial_Value => ("0");};
annex behavior_specification {**

states
init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[nx = 0]-> output {

nx := 1
};
exec -[nx = 1]-> output {

nx := 2
};
exec -[nx = 2]-> output {

nx := 0
};
output -[]-> init {

velX := nx;
outX := currX

};
**};

end RefThread.formation;

thread RefThread2D extends RefThread

77

features
velY: out data port Base_Types::Float;
outY : out data port Base_Types::Float;
currY: in data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end RefThread2D;
thread implementation RefThread2D.formation extends RefThread.formation

subcomponents
ny : data Base_Types::Float {Data_Model::Initial_Value => ("0");};

annex behavior_specification {**
states

init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[nx = 0]-> output {

nx := 1; ny := 1
};
exec -[nx = 1]-> output {

nx := 2; ny := 2
};
exec -[nx = 2]-> output {

nx := 0; ny := 0
};
output -[]-> init {

velX := nx; velY := ny;
outX := currX; outY := currY

};
**};

end RefThread2D.formation;
end RefDrone;

A.3 Drone Rendezvous with Double-Integrator Dynamics

--- Top-Level component
package FourDronesSystem
public

with Drone;
with RefDrone;
with Data_Model;
with Hybrid_SynchAADL;

system FourDronesSystem
properties

Hybrid_SynchAADL::Synchronous => true;
Hybrid_SynchAADL::Max_Clock_Deviation => 5ms;
Period => 100ms;
Classifier_Substitution_Rule => Type_Extension;

end FourDronesSystem;

78

system implementation FourDronesSystem.revu1D
subcomponents

drone1: system Drone::RevuDrone.impl;
drone2: system Drone::RevuDrone.impl;
drone3: system Drone::RevuDrone.impl;
drone4: system Drone::RevuDrone.impl;

connections
d12x: port drone1.outX -> drone2.inX;
d23x: port drone2.outX -> drone3.inX;
d34x: port drone3.outX -> drone4.inX;
d41x: port drone4.outX -> drone1.inX;
d12vx: port drone1.outVX -> drone2.inVX;
d23vx: port drone2.outVX -> drone3.inVX;
d34vx: port drone3.outVX -> drone4.inVX;
d41vx: port drone4.outVX -> drone1.inVX;

properties
Data_Model::Initial_Value => ("param") applies to

drone1.environment.x, drone2.environment.x,
drone3.environment.x, drone4.environment.x;

Data_Model::Initial_Value => ("0") applies to
drone1.environment.dotx, drone2.environment.dotx,
drone3.environment.dotx, drone4.environment.dotx;

Data_Model::Initial_Value => ("0") applies to
drone1.environment.dotdotx, drone2.environment.dotdotx,
drone3.environment.dotdotx, drone4.environment.dotdotx;

Timing => Delayed applies to
d12x, d23x, d34x, d41x, d12vx, d23vx, d34vx, d41vx;

Hybrid_SynchAADL::Sampling_Time => 20ms .. 30ms applies to
drone1.drone, drone2.drone, drone3.drone, drone4.drone;

Hybrid_SynchAADL::Response_Time => 60ms .. 80ms applies to
drone1.drone, drone2.drone, drone3.drone, drone4.drone;

end FourDronesSystem.revu1D;

system implementation FourDronesSystem.revu2D
extends FourDronesSystem.revu1D

subcomponents
drone1: refined to system Drone::RevuDrone2D.impl;
drone2: refined to system Drone::RevuDrone2D.impl;
drone3: refined to system Drone::RevuDrone2D.impl;
drone4: refined to system Drone::RevuDrone2D.impl;

connections
d12y: port drone1.outY -> drone2.inY;
d23y: port drone2.outY -> drone3.inY;
d34y: port drone3.outY -> drone4.inY;
d41y: port drone4.outY -> drone1.inY;
d12vy: port drone1.outVY -> drone2.inVY;

79

d23vy: port drone2.outVY -> drone3.inVY;
d34vy: port drone3.outVY -> drone4.inVY;
d41vy: port drone4.outVY -> drone1.inVY;

properties
Data_Model::Initial_Value => ("param") applies to

drone1.environment.y, drone2.environment.y,
drone3.environment.y, drone4.environment.y;

Data_Model::Initial_Value => ("0") applies to
drone1.environment.doty, drone2.environment.doty,
drone3.environment.doty, drone4.environment.doty;

Data_Model::Initial_Value => ("0") applies to
drone1.environment.dotdoty, drone2.environment.dotdoty,
drone3.environment.dotdoty, drone4.environment.dotdoty;

Timing => Delayed applies to
d12y, d23y, d34y, d41y, d12vy, d23vy, d34vy, d41vy;

end FourDronesSystem.revu2D;
end FourDronesSystem;

--- Drone component
package Drone
public

with Environment;
with Base_Types;
with Data_Model;
with DroneControl;

system RevuDrone
features

inX: in data port Base_Types::Float;
inVX: in data port Base_Types::Float;
outX: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
outVX: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
end RevuDrone;
system implementation RevuDrone.impl
subcomponents

drone: system DroneControl::RevuDroneControl.impl;
environment: system Environment::Environment.impl;

connections
C1: port drone.outX -> outX;
C2: port drone.outVX -> outVX;
C3: port inX -> drone.inX;
C4: port inVX -> drone.inVX;
C5: port drone.accX -> environment.accX;
C6: port environment.currX -> drone.currX;
C7: port environment.currVX -> drone.currVX;

end RevuDrone.impl;

80

system RevuDrone2D extends RevuDrone
features

inY: in data port Base_Types::Float;
inVY: in data port Base_Types::Float;
outY: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
outVY: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
properties

Classifier_Substitution_Rule => Type_Extension;
end RevuDrone2D;
system implementation RevuDrone2D.impl extends RevuDrone.impl
subcomponents

drone: refined to system DroneControl::RevuDrone2DControl.impl;
environment: refined to system Environment::Environment2D.impl;

connections
C8 : port drone.outY -> outY;
C9 : port drone.outVY -> outVY;
C10: port inY -> drone.inY;
C11: port inVY -> drone.inVY;
C12: port drone.accY -> environment.accY;
C13: port environment.currY -> drone.currY;
C14: port environment.currVY -> drone.currVY;

end RevuDrone2D.impl;

end Drone;

--- Controller component
package DroneControl
public

with Base_Types;
with DroneSpec;
with Data_Model;

system RevuDroneControl
features

currX: in data port Base_Types::Float;
currVX: in data port Base_Types::Float;
inX: in data port Base_Types::Float;
inVX: in data port Base_Types::Float;
outX : out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
outVX: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
accX: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
end RevuDroneControl;
system implementation RevuDroneControl.impl

subcomponents

81

droneProc: process RevuDroneControlProc.impl;
connections

C1: port currX -> droneProc.currX;
C2: port currVX -> droneProc.currVX;
C3: port inX -> droneProc.inX;
C4: port inVX -> droneProc.inVX;
C5: port droneProc.outX -> outX;
C6: port droneProc.outVX -> outVX;
C7: port droneProc.accX -> accX;

end RevuDroneControl.impl;

system RevuDrone2DControl extends RevuDroneControl
features

currY: in data port Base_Types::Float;
currVY: in data port Base_Types::Float;
inY: in data port Base_Types::Float;
inVY: in data port Base_Types::Float;
outY : out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
outVY: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
accY: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
properties

Classifier_Substitution_Rule => Type_Extension;
end RevuDrone2DControl;
system implementation RevuDrone2DControl.impl extends RevuDroneControl.impl
subcomponents

droneProc: refined to process RevuDrone2DControlProc.impl;
connections

C8 : port currY -> droneProc.currY;
C9 : port currVY -> droneProc.currVY;
C10: port inY -> droneProc.inY;
C11: port inVY -> droneProc.inVY;
C12: port droneProc.outY -> outY;
C13: port droneProc.outVY -> outVY;
C14: port droneProc.accY -> accY;

end RevuDrone2DControl.impl;

process RevuDroneControlProc
features

currX: in data port Base_Types::Float;
currVX: in data port Base_Types::Float;
inX: in data port Base_Types::Float;
inVX: in data port Base_Types::Float;
outX : out data port Base_Types::Float;
outVX: out data port Base_Types::Float;
accX: out data port Base_Types::Float;

82

end RevuDroneControlProc;
process implementation RevuDroneControlProc.impl
subcomponents

droneThread: thread RevuDroneControlThread.impl;
connections

C1: port currX -> droneThread.currX;
C2: port currVX -> droneThread.currVX;
C3: port inX -> droneThread.inX;
C4: port inVX -> droneThread.inVX;
C5: port droneThread.outX -> outX;
C6: port droneThread.outVX -> outVX;
C7: port droneThread.accX -> accX;

end RevuDroneControlProc.impl;

process RevuDrone2DControlProc extends RevuDroneControlProc
features

currY: in data port Base_Types::Float;
currVY: in data port Base_Types::Float;
inY: in data port Base_Types::Float;
inVY: in data port Base_Types::Float;
outY : out data port Base_Types::Float;
outVY: out data port Base_Types::Float;
accY: out data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end RevuDrone2DControlProc;
process implementation RevuDrone2DControlProc.impl

extends RevuDroneControlProc.impl
subcomponents

droneThread: refined to thread RevuDrone2DControlThread.impl;
connections

C8 : port currY -> droneThread.currY;
C9 : port currVY -> droneThread.currVY;
C10: port inY -> droneThread.inY;
C11: port inVY -> droneThread.inVY;
C12: port droneThread.outY -> outY;
C13: port droneThread.outVY -> outVY;
C14: port droneThread.accY -> accY;

end RevuDrone2DControlProc.impl;

thread RevuDroneControlThread
features

currX: in data port Base_Types::Float;
currVX: in data port Base_Types::Float;
inX: in data port Base_Types::Float;
inVX: in data port Base_Types::Float;
outX : out data port Base_Types::Float;
outVX: out data port Base_Types::Float;
accX: out data port Base_Types::Float;

83

properties
Dispatch_Protocol => Periodic;

end RevuDroneControlThread;
thread implementation RevuDroneControlThread.impl

annex behavior_specification {**
variables

nx : Base_Types::Float;
states

init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;

exec -[abs(currX - inX) < 0.3]-> output{
accX := -currVX

};
exec -[otherwise]-> output {

nx := - #DroneSpec::A * (currX - inX
+ #DroneSpec::gamma * (currVX - inVX));

if (nx > 0.5) accX := 40
elsif (nx > 0) accX := 0
else accX := -40
end if

};
output -[]-> init {

outX := currX;
outVX := currVX

};
**};
end RevuDroneControlThread.impl;

thread RevuDrone2DControlThread extends RevuDroneControlThread
features

currY: in data port Base_Types::Float;
currVY: in data port Base_Types::Float;
inY: in data port Base_Types::Float;
inVY: in data port Base_Types::Float;
outY : out data port Base_Types::Float;
outVY: out data port Base_Types::Float;
accY: out data port Base_Types::Float;

end RevuDrone2DControlThread;
thread implementation RevuDrone2DControlThread.impl

extends RevuDroneControlThread.impl
annex behavior_specification {**

variables
nx, ny : Base_Types::Float;

states
init : initial complete state;
exec, output : state;

transitions

84

init -[on dispatch]-> exec;
exec -[abs(currX - inX) < 0.3 and abs(currY - inY) < 0.3]-> output{

accX := -currVX;
accY := -currVY

};
exec -[otherwise]-> output {

nx := - #DroneSpec::A * (currX - inX
+ #DroneSpec::gamma * (currVX - inVX));

ny := - #DroneSpec::A * (currY - inY
+ #DroneSpec::gamma * (currVY - inVY));

if (nx > 0.5) accX := 40
elsif (nx > 0) accX := 0
else accX := -40
end if;
if (ny > 0.5) accY := 40
elsif (ny > 0) accY := 0
else accY := -40
end if

};
output -[]-> init {

outX := currX;
outVX := currVX;
outY := currY;
outVY := currVY

};
**};
end RevuDrone2DControlThread.impl;

end DroneControl;

--- Environment component
package Environment
public

with Hybrid_SynchAADL;
with Base_Types;
with Data_Model;

system Environment
features

currX : out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

currVX : out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

accX : in data port Base_Types::Float;
properties

Hybrid_SynchAADL::isEnvironment => true;
end Environment;
system implementation Environment.impl

subcomponents
x : data Base_Types::Float;
dotx : data Base_Types::Float;

85

dotdotx : data Base_Types::Float;
connections

C1: port currVX -> dotx;
C2: port x -> currX;
C3: port accX -> dotdotx;

properties
Hybrid_SynchAADL::ContinuousDynamics =>
"dotx(t) = ((0.001) * dotdotx * t) + dotx(0);
x(t) = (x(0) + (0.001 * dotx(0) * t)

+ ((0.000001) * dotdotx * t * t) / 2) ; ";
end Environment.impl;

system Environment2D extends Environment
features

currY : out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

currVY : out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

accY : in data port Base_Types::Float;
end Environment2D;
system implementation Environment2D.impl extends Environment.impl

subcomponents
y : data Base_Types::Float;
doty : data Base_Types::Float;
dotdoty : data Base_Types::Float;

connections
C4: port currVY -> doty;
C5: port y -> currY;
C6: port accY -> dotdoty;

properties
Hybrid_SynchAADL::ContinuousDynamics =>

"dotx(t) = ((0.001) * dotdotx * t) + dotx(0);
x(t) = (x(0) + (0.001 * dotx(0) * t)

+ ((0.000001) * dotdotx * t * t) / 2);
doty(t) = ((0.001) * dotdoty * t) + doty(0);
y(t) = (y(0) + (0.001 * doty(0) * t)

+ ((0.000001) * dotdoty * t * t) / 2);";
end Environment2D.impl;
end Environment;

A.4 Drone Formation with Dingle-Integrator Dynamics

--- Top-Level component
package FourDronesSystem
public

with Drone;
with RefDrone;
with Data_Model;
with Hybrid_SynchAADL;

86

system FourDronesSystem
properties

Hybrid_SynchAADL::Synchronous => true;
Hybrid_SynchAADL::Max_Clock_Deviation => 5ms;
Period => 100ms;
Classifier_Substitution_Rule => Type_Extension;

end FourDronesSystem;

system implementation FourDronesSystem.form1D
extends FourDronesSystem.revu1D

subcomponents
drone1: refined to system Drone::FormDrone.impl;
drone2: refined to system Drone::FormDrone.impl;
drone3: refined to system Drone::FormDrone.impl;
drone4: refined to system Drone::FormDrone.impl;
refDrone: system RefDrone::RefDroneControl.formation;

connections
r1x: port refDrone.outX -> drone1.refX;
r2x: port refDrone.outX -> drone2.refX;
r3x: port refDrone.outX -> drone3.refX;
r4x: port refDrone.outX -> drone4.refX;

properties
Data_Model::Initial_Value => ("-0.5") applies to

drone1.drone.droneProc.droneThread.offsetX,
drone3.drone.droneProc.droneThread.offsetX;

Data_Model::Initial_Value => ("0") applies to
drone2.drone.droneProc.droneThread.offsetX,
drone4.drone.droneProc.droneThread.offsetX;

Data_Model::Initial_Value => ("param") applies to
refDrone.env.x;

Timing => Delayed applies to
r1x, r2x, r3x, r4x;

Hybrid_SynchAADL::Sampling_Time => 20ms .. 30ms
applies to refDrone.refDrone;

Hybrid_SynchAADL::Response_Time => 60ms .. 80ms
applies to refDrone.refDrone;

end FourDronesSystem.form1D;

system implementation FourDronesSystem.form2D
extends FourDronesSystem.revu2D

subcomponents
drone1: refined to system Drone::FormDrone2D.impl;
drone2: refined to system Drone::FormDrone2D.impl;
drone3: refined to system Drone::FormDrone2D.impl;
drone4: refined to system Drone::FormDrone2D.impl;
refDrone: system RefDrone::RefDrone2DControl.formation;

87

connections
r1x: port refDrone.outX -> drone1.refX;
r2x: port refDrone.outX -> drone2.refX;
r3x: port refDrone.outX -> drone3.refX;
r4x: port refDrone.outX -> drone4.refX;
r1y: port refDrone.outY -> drone1.refY;
r2y: port refDrone.outY -> drone2.refY;
r3y: port refDrone.outY -> drone3.refY;
r4y: port refDrone.outY -> drone4.refY;

properties
Data_Model::Initial_Value => ("0.5") applies to

drone1.drone.droneProc.droneThread.offsetY,
drone2.drone.droneProc.droneThread.offsetY;

Data_Model::Initial_Value => ("-0.5") applies to
drone1.drone.droneProc.droneThread.offsetX,
drone3.drone.droneProc.droneThread.offsetX;

Data_Model::Initial_Value => ("0") applies to
drone2.drone.droneProc.droneThread.offsetX,
drone3.drone.droneProc.droneThread.offsetY,
drone4.drone.droneProc.droneThread.offsetX,
drone4.drone.droneProc.droneThread.offsetY;

Data_Model::Initial_Value => ("param") applies to
refDrone.env.x;

Timing => Delayed applies to
r1x, r2x, r3x, r4x, r1y, r2y, r3y, r4y;

Hybrid_SynchAADL::Sampling_Time => 20ms .. 30ms
applies to refDrone.refDrone;

Hybrid_SynchAADL::Response_Time => 60ms .. 80ms
applies to refDrone.refDrone;

end FourDronesSystem.form2D;
end FourDronesSystem;

--- Drone component
package Drone
public

with Environment;
with Base_Types;
with Data_Model;
with DroneControl;

system FormDrone extends RevuDrone
features

refX: in data port Base_Types::Float;
refVX: in data port Base_Types::Float;

end FormDrone;
system implementation FormDrone.impl extends RevuDrone.impl

88

subcomponents
drone: refined to system DroneControl::FormDroneControl.impl;
environment: refined to system Environment::Environment.impl;

connections
C8: port refX -> drone.refX;
C9: port refVX -> drone.refVX;

end FormDrone.impl;

system FormDrone2D extends RevuDrone2D
features

refX: in data port Base_Types::Float;
refY: in data port Base_Types::Float;
refVX: in data port Base_Types::Float;
refVY: in data port Base_Types::Float;

end FormDrone2D;
system implementation FormDrone2D.impl extends RevuDrone2D.impl
subcomponents

drone: refined to system DroneControl::FormDrone2DControl.impl;
environment: refined to system Environment::Environment2D.impl;

connections
C15: port refX -> drone.refX;
C16: port refY -> drone.refY;
C17: port refVX -> drone.refVX;
C18: port refVY -> drone.refVY;

end FormDrone2D.impl;
end Drone;

--- Controller component
package DroneControl
public

with Base_Types;
with DroneSpec;
with Data_Model;

system FormDroneControl extends RevuDroneControl
features

refX: in data port Base_Types::Float;
refVX: in data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end FormDroneControl;
system implementation FormDroneControl.impl extends RevuDroneControl.impl
subcomponents

droneProc: refined to process FormDroneControlProc.impl;
connections

C8: port refX -> droneProc.refX;
C9: port refVX -> droneProc.refVX;

end FormDroneControl.impl;

89

system FormDrone2DControl extends RevuDrone2DControl
features

refX: in data port Base_Types::Float;
refY: in data port Base_Types::Float;
refVX: in data port Base_Types::Float;
refVY: in data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end FormDrone2DControl;
system implementation FormDrone2DControl.impl

extends RevuDrone2DControl.impl
subcomponents

droneProc: refined to process FormDrone2DControlProc.impl;
connections

C15: port refX -> droneProc.refX;
C16: port refY -> droneProc.refY;
C17: port refVX -> droneProc.refVX;
C18: port refVY -> droneProc.refVY;

end FormDrone2DControl.impl;

process FormDroneControlProc extends RevuDroneControlProc
features

refX: in data port Base_Types::Float;
refVX: in data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end FormDroneControlProc;
process implementation FormDroneControlProc.impl

extends RevuDroneControlProc.impl
subcomponents

droneThread: refined to thread FormDroneControlThread.impl;
connections

C8: port refX -> droneThread.refX;
C9: port refVX -> droneThread.refVX;

end FormDroneControlProc.impl;

process FormDrone2DControlProc extends RevuDrone2DControlProc
features

refX: in data port Base_Types::Float;
refY: in data port Base_Types::Float;
refVX: in data port Base_Types::Float;
refVY: in data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end FormDrone2DControlProc;
process implementation FormDrone2DControlProc.impl

extends RevuDrone2DControlProc.impl

90

subcomponents
droneThread: refined to thread FormDrone2DControlThread.impl;

connections
C15: port refX -> droneThread.refX;
C16: port refY -> droneThread.refY;
C17: port refVX -> droneThread.refVX;
C18: port refVY -> droneThread.refVY;

end FormDrone2DControlProc.impl;

thread FormDroneControlThread extends RevuDroneControlThread
features

refX: in data port Base_Types::Float;
refVX: in data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end FormDroneControlThread;
thread implementation FormDroneControlThread.impl

extends RevuDroneControlThread.impl
subcomponents

offsetX: data Base_Types::Float;
refVX0: data Base_Types::Float

{Data_Model::Initial_Value => ("0");};
annex behavior_specification {**

variables
nx, refaX : Base_Types::Float;

states
init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;

exec -[abs(currX - inX) < 0.3]-> output{
accX := -currVX

};
exec -[otherwise]-> output {

refaX := (refVX - refVX0);
nx := refaX - #DroneSpec::alpha * (currX - offsetX - refX

+ #DroneSpec::gamma * (currVX - refVX))
- #DroneSpec::A * (currX - offsetX - inX
+ #DroneSpec::gamma * (currVX - inVX));

if (nx > 0.5) accX := 40
elsif (nx > 0) accX := 0
else accX := -40
end if

};
output -[]-> init {

outX := currX - offsetX;
outVX := currVX;
refVX0 := refVX

};

91

**};
end FormDroneControlThread.impl;

thread FormDrone2DControlThread extends RevuDrone2DControlThread
features

refX: in data port Base_Types::Float;
refY: in data port Base_Types::Float;
refVX: in data port Base_Types::Float;
refVY: in data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end FormDrone2DControlThread;
thread implementation FormDrone2DControlThread.impl

extends RevuDrone2DControlThread.impl
subcomponents

offsetX: data Base_Types::Float;
offsetY: data Base_Types::Float;
refVX0: data Base_Types::Float

{Data_Model::Initial_Value => ("0");};
refVY0: data Base_Types::Float

{Data_Model::Initial_Value => ("0");};
annex behavior_specification {**

variables
nx, refaX : Base_Types::Float;
ny, refaY : Base_Types::Float;

states
init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[abs(currX - inX) < 0.3 and abs(currY - inY) < 0.3]-> output{

accX := -currVX;
accY := -currVY

};
exec -[otherwise]-> output {

refaX := (refVX - refVX0);
nx := refaX - #DroneSpec::alpha * (currX - offsetX - refX

+ #DroneSpec::gamma * (currVX - refVX))
- #DroneSpec::A * (currX - offsetX - inX
+ #DroneSpec::gamma * (currVX - inVX));

refaX := (refVX - refVX0);
ny := refaY - #DroneSpec::alpha * (currY - offsetY - refY

+ #DroneSpec::gamma * (currVY - refVY))
- #DroneSpec::A * (currY - offsetY - inY
+ #DroneSpec::gamma * (currVY - inVY));

if (nx > 0.5) accX := 40
elsif (nx > 0.1) accX := 20
elsif (nx > 0) accX := 0
elsif (nx > -0.1) accX := 20

92

else accX := -40
end if;
if (ny > 0.5) accY := 40
elsif (ny > 0.1) accY := 20
elsif (ny > 0) accY := 0
elsif (ny > -0.1) accY := 20
else accY := -40
end if

};
output -[]-> init {

outX := currX - offsetX;
outVX := currVX;
refVX0 := refVX;
outY := currY - offsetY;
outVY := currVY;
refVY0 := refVY

};
**};
end FormDrone2DControlThread.impl;

end DroneControl;

--- Reference drone component
package RefDrone
public

with Base_Types;
with Environment;
with Data_Model;

system RefDroneControl
features

outX: out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

outVX: out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

end RefDroneControl;
system implementation RefDroneControl.formation

subcomponents
refDrone: system RefDrone.formation;
env: system Environment::Environment.impl;

connections
C1: port refDrone.accX -> env.accX;
C2: port env.currX -> refDrone.currX;
C3: port refDrone.outX -> outX;
C4: port env.currVX -> refDrone.currVX;
C5: port refDrone.outVX -> outVX;

end RefDroneControl.formation;

system RefDrone2DControl extends RefDroneControl
features

93

outY: out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

outVY: out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

properties
Classifier_Substitution_Rule => Type_Extension;

end RefDrone2DControl;
system implementation RefDrone2DControl.formation

extends RefDroneControl.formation
subcomponents

refDrone: refined to system RefDrone2D.formation;
env: refined to system Environment::Environment2D.impl;

connections
C6 : port refDrone.accY -> env.accY;
C7 : port env.currY -> refDrone.currY;
C8 : port refDrone.outY -> outY;
C9 : port env.currVY -> refDrone.currVY;
C10: port refDrone.outVY -> outVY;

end RefDrone2DControl.formation;

system RefDrone
features

accX: out data port Base_Types::Float;
outX : out data port Base_Types::Float;
outVX :out data port Base_Types::Float;
currX: in data port Base_Types::Float;
currVX: in data port Base_Types::Float;

end refDrone;
system implementation RefDrone.formation
subcomponents

refProc: process refProc.formation;
connections

C1: port refProc.accX -> accX;
C2: port currX -> refProc.currX;
C3: port currVX -> refProc.currVX;
C4: port refProc.outX -> outX;
C5: port refProc.outVX -> outVX;

end RefDrone.formation;

system RefDrone2D extends RefDrone
features

accY: out data port Base_Types::Float;
outY : out data port Base_Types::Float;
outVY :out data port Base_Types::Float;
currY: in data port Base_Types::Float;
currVY: in data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

94

end RefDrone2D;
system implementation RefDrone2D.formation extends RefDrone.formation
subcomponents

refProc: refined to process RefProc2D.formation;
connections

C6 : port refProc.accY -> accY;
C7 : port currY -> refProc.currY;
C8 : port currVY -> refProc.currVY;
C9 : port refProc.outY -> outY;
C10: port refProc.outVY -> outVY;

end RefDrone2D.formation;

process RefProc
features

accX: out data port Base_Types::Float;
outX : out data port Base_Types::Float;
outVX :out data port Base_Types::Float;
currX: in data port Base_Types::Float;
currVX: in data port Base_Types::Float;

end RefProc;
process implementation RefProc.formation

subcomponents
refThread: thread RefThread.formation;

connections
C1: port refThread.accX -> accX;
C2: port currX -> refThread.currX;
C3: port currVX -> refThread.currVX;
C4: port refThread.outX -> outX;
C5: port refThread.outVX -> outVX;

end RefProc.formation;

process RefProc2D extends RefProc
features

accY: out data port Base_Types::Float;
outY : out data port Base_Types::Float;
outVY :out data port Base_Types::Float;
currY: in data port Base_Types::Float;
currVY: in data port Base_Types::Float;

properties
Classifier_Substitution_Rule => Type_Extension;

end RefProc2D;
process implementation RefProc2D.formation extends RefProc.formation

subcomponents
refThread: refined to thread RefThread2D.formation;

connections
C6 : port refThread.accY -> accY;
C7 : port currY -> refThread.currY;
C8 : port currVY -> refThread.currVY;
C9 : port refThread.outY -> outY;

95

C10: port refThread.outVY -> outVY;
end RefProc2D.formation;

thread RefThread
features

accX: out data port Base_Types::Float;
outX : out data port Base_Types::Float;
outVX :out data port Base_Types::Float;
currX: in data port Base_Types::Float;
currVX: in data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end RefThread;
thread implementation RefThread.formation

subcomponents
nx : data Base_Types::Float

{Data_Model::Initial_Value => ("0");};
array: data Base_Types::Float[10];

annex behavior_specification {**
states

init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[nx = 0]-> output {

nx := 1;
};
exec -[nx = 1]-> output {

nx := 2
};
exec -[nx = 2]-> output {

nx := 0
};

output -[]-> init {
accX := nx;
outX := currX;
outVX := currVX

};
**};

end RefThread.formation;

thread RefThread2D extends RefThread
features

accY: out data port Base_Types::Float;
outY : out data port Base_Types::Float;
outVY :out data port Base_Types::Float;
currY: in data port Base_Types::Float;
currVY: in data port Base_Types::Float;

properties

96

Dispatch_Protocol => Periodic;
end RefThread2D;
thread implementation RefThread2D.formation extends RefThread.formation

subcomponents
ny : data Base_Types::Float

{Data_Model::Initial_Value => ("0");};
annex behavior_specification {**

states
init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[nx = 0 and ny = 0]-> output {

nx := 1;
ny := 1

};
exec -[nx = 1 and ny = 1]-> output {

nx := 2;
ny := 2

};
exec -[nx = 2 and ny = 2]-> output {

nx := 0;
ny := 0

};
output -[]-> init {

accX := nx;
outX := currX;
outVX := currVX;
accY := ny;
outY := currY;
outVY := currVY

};
**};

end RefThread2D.formation;
end RefDrone;

A.5 Networked WaterTank

--- Top-Level component
package FourWaterTankSystem
public

with Hybrid_SynchAADL;
with WaterTank;
with Environment;
with LeftWaterTank;
with LeftEnvironment;
with RightWaterTank;
with RightEnvironment;
with Data_Model;

97

system FourWaterTankSystem
properties

Hybrid_SynchAADL::Synchronous => true;
end FourWaterTankSystem;

system implementation FourWaterTankSystem.simple
subcomponents

waterTank1: system LeftWaterTank::LeftWaterTank.simple;
waterTank2: system WaterTank::WaterTank.simple;
waterTank3: system WaterTank::WaterTank.simple;
waterTank4: system RightWaterTank::RightWaterTank.simple;

env1: system LeftEnvironment::LeftEnvironment.impl;
env2: system Environment::Environment.impl;
env3: system Environment::Environment.impl;
env4: system RightEnvironment::RightEnvironment.impl;

connections
C11: port waterTank1.on_control -> env1.on_control;
C12: port waterTank1.off_control -> env1.off_control;
C13: port waterTank1.power -> env1.power;
C14: port env1.decreased_water -> waterTank1.decreased_water;
C15: port env1.curr_water -> waterTank1.curr_water;
C16: port waterTank1.released_water -> waterTank2.incoming_water;

C21: port waterTank2.on_control -> env2.on_control;
C22: port waterTank2.off_control -> env2.off_control;
C23: port waterTank2.increased_water -> env2.increased_water;
C24: port waterTank2.power -> env2.power;
C25: port env2.decreased_water -> waterTank2.decreased_water;
C26: port env2.curr_water -> waterTank2.curr_water;
C27: port waterTank2.released_water -> waterTank3.incoming_water;

C31: port waterTank3.on_control -> env3.on_control;
C32: port waterTank3.off_control -> env3.off_control;
C33: port waterTank3.increased_water -> env3.increased_water;
C34: port waterTank3.power -> env3.power;
C35: port env3.decreased_water -> waterTank3.decreased_water;
C36: port env3.curr_water -> waterTank3.curr_water;
C37: port waterTank3.released_water -> waterTank4.incoming_water;

C41: port waterTank4.on_control -> env4.on_control;
C42: port waterTank4.off_control -> env4.off_control;
C43: port waterTank4.power -> env4.power;
C44: port env4.curr_water -> waterTank4.curr_water;
C45: port waterTank4.increased_water -> env4.increased_water;

properties
Period => 100ms;

Timing => Delayed applies to C16, C27, C37;

98

Hybrid_SynchAADL::Max_Clock_Deviation => 5ms;

Hybrid_SynchAADL::Sampling_Time => 20ms .. 30ms applies to
waterTank1, waterTank2, waterTank3, waterTank4;

Hybrid_SynchAADL::Response_Time => 60ms .. 80ms applies to
waterTank1, waterTank2, waterTank3, waterTank4;

Data_Model::Initial_Value => ("param") applies to
env1.water, env2.water, env3.water, env4.water;

Data_Model::Initial_Value => ("0") applies to
env1.decrease, env2.decrease, env3.decrease, env4.decrease;

Data_Model::Initial_Value => ("0") applies to
env1.pump_power, env2.pump_power, env3.pump_power, env4.pump_power;

Data_Model::Initial_Value => ("0") applies to
env2.increase, env3.increase, env4.increase;

end FourWaterTankSystem.simple;

system implementation FourWaterTankSystem.complex
extends FourWaterTankSystem.simple

subcomponents
waterTank1: refined to system LeftWaterTank::LeftWaterTank.complex;
waterTank2: refined to system WaterTank::WaterTank.complex;
waterTank3: refined to system WaterTank::WaterTank.complex;
waterTank4: refined to system RightWaterTank::RightWaterTank.complex;

end FourWaterTankSystem.complex;
end FourWaterTankSystem;

--- Watertank controller component
package WaterTank
public

with Base_Types;
with Data_Model;

system WaterTank
features

on_control: out event port;
off_control: out event port;
curr_water: in data port Base_Types::Float;
incoming_water: in data port Base_Types::Float;
increased_water: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
released_water: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
power: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
decreased_water: in data port Base_Types::Float;

99

end WaterTank;

system implementation WaterTank.simple
subcomponents

ctrlProc: process WaterTankProc.simple;
connections

C1: port ctrlProc.on_control -> on_control;
C2: port ctrlProc.off_control -> off_control;
C3: port curr_water -> ctrlProc.curr_water;
C4: port incoming_water -> ctrlProc.incoming_water;
C5: port ctrlProc.increased_water -> increased_water;
C6: port ctrlProc.released_water -> released_water;
C7: port ctrlProc.power -> power;
C8: port decreased_water -> ctrlProc.decreased_water;

end WaterTank.simple;

system implementation WaterTank.complex extends WaterTank.simple
subcomponents

ctrlProc: refined to process WaterTankProc.complex;
end WaterTank.complex;

process WaterTankProc
features

on_control: out event port;
off_control: out event port;
curr_water: in data port Base_Types::Float;
incoming_water: in data port Base_Types::Float;
increased_water: out data port Base_Types::Float;
released_water: out data port Base_Types::Float;
decreased_water: in data port Base_Types::Float;
power: out data port Base_Types::Float;

end WaterTankProc;

process implementation WaterTankProc.simple
subcomponents

ctrlThread: thread WaterTankThread.simple;
connections

C1: port ctrlThread.on_control -> on_control;
C2: port ctrlThread.off_control -> off_control;
C3: port curr_water -> ctrlThread.curr_water;
C4: port incoming_water -> ctrlThread.incoming_water;
C5: port ctrlThread.increased_water -> increased_water;
C6: port ctrlThread.released_water -> released_water;
C7: port ctrlThread.power -> power;
C8: port decreased_water -> ctrlThread.decreased_water;

end WaterTankProc.simple;

process implementation WaterTankProc.complex extends WaterTankProc.simple
subcomponents

ctrlThread: refined to thread WaterTankThread.complex;

100

end WaterTankProc.complex;

thread WaterTankThread
features

on_control: out event port;
off_control: out event port;
curr_water: in data port Base_Types::Float;
incoming_water: in data port Base_Types::Float;
increased_water: out data port Base_Types::Float;
released_water: out data port Base_Types::Float;
power: out data port Base_Types::Float;
decreased_water: in data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end WaterTankThread;

thread implementation WaterTankThread.simple
annex behavior_specification{**

states
init : initial complete state;
exec : state;

transitions
init -[on dispatch]-> exec {

increased_water := incoming_water;
released_water := decreased_water

};
exec -[true]-> init {

if (curr_water <= 33)
power := 0.5;
on_control!

elsif (curr_water <= 39)
power := 0.3;
on_control!

else {
power := 0.0;
off_control!

}
end if

};
**};

end WaterTankThread.simple;

thread implementation WaterTankThread.complex
extends WaterTankThread.simple

annex behavior_specification{**
states

init : initial complete state;
exec : state;

transitions
init -[on dispatch]-> exec {

101

increased_water := incoming_water;
released_water := decreased_water

};
exec -[curr_water <= 42]-> init {

if (curr_water <= 30)
power := 0.5

elsif (curr_water <= 33)
power := 0.4

elsif (curr_water <= 36)
power := 0.3

elsif (curr_water <= 39)
power := 0.2

else {
power := 0.1

}
end if;
on_control!

};
exec -[otherwise]-> init {

off_control!
};

**};
end WaterTankThread.complex;

end WaterTank;

--- Watertank controller component
package LeftWaterTank
public

with Base_Types;
with Data_Model;

system LeftWaterTank
features

on_control: out event port;
off_control: out event port;
released_water: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
power: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
decreased_water: in data port Base_Types::Float;
curr_water: in data port Base_Types::Float;

end LeftWaterTank;

system implementation LeftWaterTank.simple
subcomponents

ctrlProc: process LeftWaterTankProc.simple;
connections

C1: port ctrlProc.on_control -> on_control;

102

C2: port ctrlProc.off_control -> off_control;
C4: port ctrlProc.released_water -> released_water;
C5: port ctrlProc.power -> power;
C6: port decreased_water -> ctrlProc.decreased_water;
C7: port curr_water -> ctrlProc.curr_water;

end LeftWaterTank.simple;

system implementation LeftWaterTank.complex extends LeftWaterTank.simple
subcomponents

ctrlProc: refined to process LeftWaterTankProc.complex;
end LeftWaterTank.complex;

process LeftWaterTankProc
features

on_control: out event port;
off_control: out event port;
released_water: out data port Base_Types::Float;
power: out data port Base_Types::Float;
decreased_water: in data port Base_Types::Float;
curr_water: in data port Base_Types::Float;

end LeftWaterTankProc;

process implementation LeftWaterTankProc.simple
subcomponents

ctrlThread: thread LeftWaterTankThread.simple;
connections

C1: port ctrlThread.on_control -> on_control;
C2: port ctrlThread.off_control -> off_control;
C4: port ctrlThread.released_water -> released_water;
C5: port ctrlThread.power -> power;
C6: port decreased_water -> ctrlThread.decreased_water;
C7: port curr_water -> ctrlThread.curr_water;

end LeftWaterTankProc.simple;

process implementation LeftWaterTankProc.complex
extends LeftWaterTankProc.simple

subcomponents
ctrlThread: refined to thread LeftWaterTankThread.complex;

end LeftWaterTankProc.complex;

thread LeftWaterTankThread
features

on_control: out event port;
off_control: out event port;
released_water: out data port Base_Types::Float;
decreased_water: in data port Base_Types::Float;
curr_water: in data port Base_Types::Float;
power: out data port Base_Types::Float;

properties

103

Dispatch_Protocol => Periodic;
end LeftWaterTankThread;

thread implementation LeftWaterTankThread.simple
annex behavior_specification{**

states
init : initial complete state;
exec : state;

transitions
init -[on dispatch]-> exec {

released_water := decreased_water
};
exec -[true]-> init {

if (curr_water <= 33)
power := 0.5;
on_control!

elsif (curr_water <= 39)
power := 0.3;
on_control!

else {
power := 0.0;
off_control!

}
end if

};
**};

end LeftWaterTankThread.simple;

thread implementation LeftWaterTankThread.complex
extends LeftWaterTankThread.simple

annex behavior_specification{**
states

init : initial complete state;
exec : state;

transitions
init -[on dispatch]-> exec {

released_water := decreased_water
};
exec -[curr_water <= 42]-> init {

if (curr_water <= 30)
power := 0.5

elsif (curr_water <= 33)
power := 0.4

elsif (curr_water <= 36)
power := 0.3

elsif (curr_water <= 39)
power := 0.2

else {
power := 0.1

}

104

end if;
on_control!

};
exec -[otherwise]-> init {

off_control!
};

**};
end LeftWaterTankThread.complex;

end LeftWaterTank;

--- Watertank controller component
package RightWaterTank
public

with Base_Types;
with Data_Model;

system RightWaterTank
features

on_control: out event port;
off_control: out event port;
curr_water: in data port Base_Types::Float;
incoming_water: in data port Base_Types::Float;
increased_water: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
power: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
end RightWaterTank;

system implementation RightWaterTank.simple
subcomponents

ctrlProc: process RightWaterTankProc.simple;
connections

C1: port ctrlProc.on_control -> on_control;
C2: port ctrlProc.off_control -> off_control;
C3: port curr_water -> ctrlProc.curr_water;
C4: port incoming_water -> ctrlProc.incoming_water;
C5: port ctrlProc.increased_water -> increased_water;
C6: PORT ctrlProc.power -> power;

end RightWaterTank.simple;

system implementation RightWaterTank.complex extends RightWaterTank.simple
subcomponents

ctrlProc: refined to process RightWaterTankProc.complex;
end RightWaterTank.complex;

process RightWaterTankProc
features

on_control: out event port;

105

off_control: out event port;
curr_water: in data port Base_Types::Float;
incoming_water: in data port Base_Types::Float;
increased_water: out data port Base_Types::Float;
power: out data port Base_Types::Float;

end RightWaterTankProc;

process implementation RightWaterTankProc.simple
subcomponents

ctrlThread: thread RightWaterTankThread.simple;
connections

C1: port ctrlThread.on_control -> on_control;
C2: port ctrlThread.off_control -> off_control;
C3: port curr_water -> ctrlThread.curr_water;
C4: port incoming_water -> ctrlThread.incoming_water;
C5: port ctrlThread.increased_water -> increased_water;
C6: port ctrlThread.power -> power;

end RightWaterTankProc.simple;

process implementation RightWaterTankProc.complex
extends RightWaterTankProc.simple

subcomponents
ctrlThread: refined to thread RightWaterTankThread.complex;

end RightWaterTankProc.complex;

thread RightWaterTankThread
features

on_control: out event port;
off_control: out event port;
curr_water: in data port Base_Types::Float;
incoming_water: in data port Base_Types::Float;
increased_water: out data port Base_Types::Float;
power: out data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end RightWaterTankThread;

thread implementation RightWaterTankThread.simple
annex behavior_specification{**

states
init : initial complete state;
exec : state;

transitions
init -[on dispatch]-> exec {

increased_water := incoming_water
};
exec -[true]-> init {

if (curr_water <= 33)
power := 0.5;
on_control!

106

elsif (curr_water <= 39)
power := 0.3;
on_control!

else {
power := 0.0;
off_control!

}
end if

};
**};

end RightWaterTankThread.simple;

thread implementation RightWaterTankThread.complex
extends RightWaterTankThread.simple

annex behavior_specification{**
states

init : initial complete state;
exec : state;

transitions
init -[on dispatch]-> exec {

increased_water := incoming_water
};
exec -[curr_water <= 42]-> init {

if (curr_water <= 30)
power := 0.5

elsif (curr_water <= 33)
power := 0.4

elsif (curr_water <= 36)
power := 0.3

elsif (curr_water <= 39)
power := 0.2

else {
power := 0.1

}
end if;
on_control!

};
exec -[otherwise]-> init {

off_control!
};

**};
end RightWaterTankThread.complex;

end RightWaterTank;

--- Environment component
package Environment
public

with Base_Types;

107

with Data_Model;
with Hybrid_SynchAADL;

system Environment
features

curr_water : out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

increased_water : in data port Base_Types::Float;
power: in data port Base_Types::Float;
decreased_water : out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
on_control : in event port;
off_control : in event port;

properties
Hybrid_SynchAADL::isEnvironment => true;

end Environment;

system implementation Environment.impl
subcomponents

water: data Base_Types::Float;
decrease: data Base_Types::Float;
increase: data Base_Types::Float;
pump_power: data Base_Types::Float;

connections
C1: port water -> curr_water;
C2: port increased_water -> increase;
C3: port decrease -> decreased_water;
C4: port power -> pump_power;

modes
off: initial mode;
on: mode;

off -[on_control]-> on;
off -[off_control]-> off;

on -[on_control]-> on;
on -[off_control]-> off;

properties
Hybrid_SynchAADL::ContinuousDynamics =>

"decrease(t) = (50 * 0.001 * t) ;
water(t) = water(0) + pump_power - (50 * 0.001 * t)

+ increase" in modes(on),
"decrease(t) = (50 * 0.001 * t) ;
water(t) = water(0) - (50 * 0.001 * t) + increase" in modes(off);

end Environment.impl;
end Environment;

A.6 Networked Thermostat

108

--- Top-Level component
package FourRoomTherm
public

with Thermostat;
with Thermostat2side;
with Hybrid_SynchAADL;
with RoomEnv;
with Data_Model;

system FourRoomTherm
properties

Hybrid_SynchAADL::Synchronous => true;
end FourRoomTherm;

system implementation FourRoomTherm.simple
subcomponents

therm1: system Thermostat::Thermostat.simple;
therm2: system Thermostat2side::Thermostat2side.simple;
therm3: system Thermostat2side::Thermostat2side.simple;
therm4: system Thermostat::Thermostat.simple;

env1: system RoomEnv::RoomEnv.impl;
env2: system RoomEnv::RoomEnv.impl;
env3: system RoomEnv::RoomEnv.impl;
env4: system RoomEnv::RoomEnv.impl;

connections
C11: port therm1.on_control -> env1.on_control;
C12: port therm1.off_control -> env1.off_control;
C13: port therm1.power -> env1.power;
C14: port therm1.t_out -> therm2.t_in1;
C15: port env1.temp -> therm1.curr_temp;

C21: port therm2.on_control -> env2.on_control;
C22: port therm2.off_control -> env2.off_control;
C23: port therm2.power -> env2.power;
C24: port therm2.t_out -> therm1.t_in;
C25: port therm2.t_out -> therm3.t_in1;
C26: port env2.temp -> therm2.curr_temp;

C31: port therm3.on_control -> env3.on_control;
C32: port therm3.off_control -> env3.off_control;
C33: port therm3.power -> env3.power;
C34: port therm3.t_out -> therm2.t_in2;
C35: port therm3.t_out -> therm4.t_in;
C36: port env3.temp -> therm3.curr_temp;

C41: port therm4.on_control -> env4.on_control;
C42: port therm4.off_control -> env4.off_control;
C43: port therm4.power -> env4.power;
C44: port therm4.t_out -> therm3.t_in2;

109

C45: port env4.temp -> therm4.curr_temp;

properties
Period => 100 ms;

Data_Model::Initial_Value => ("param") applies to
env1.x, env2.x, env3.x, env4.x;

Timing => Delayed applies to
C14, C24, C25, C34, C35, C44;

Hybrid_SynchAADL::Max_Clock_Deviation => 5ms;

Hybrid_SynchAADL::Sampling_Time => 20ms .. 30ms applies to
therm1, therm3, therm2, therm4;
Hybrid_SynchAADL::Response_Time => 60ms .. 70ms applies to
therm1, therm3, therm2, therm4;

end FourRoomTherm.simple;

system implementation FourRoomTherm.complex extends FourRoomTherm.simple
subcomponents

therm1: refined to system Thermostat::Thermostat.complex;
therm2: refined to system Thermostat2side::Thermostat2side.complex;
therm3: refined to system Thermostat2side::Thermostat2side.complex;
therm4: refined to system Thermostat::Thermostat.complex;

end FourRoomTherm.complex;
end FourRoomTherm;

--- Thermostat controller component
package Thermostat
public
with Base_Types;
with Data_Model;

system Thermostat
features
on_control: out event port;
off_control: out event port;
power : out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
t_out : out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
t_in: in data port Base_Types::Float;
curr_temp : in data port Base_Types::Float;

end Thermostat;

system implementation Thermostat.simple
subcomponents

110

ctrlProc: process ThermostatProc.simple;
connections
O1: port ctrlProc.on_control -> on_control;
O2: port ctrlProc.off_control -> off_control;
O3: port ctrlProc.power -> power;
O4: port ctrlProc.t_out -> t_out;
I1: port t_in -> ctrlProc.t_in;
I2: port curr_temp -> ctrlProc.curr_temp;

end Thermostat.simple;

system implementation Thermostat.complex extends Thermostat.simple
subcomponents
ctrlProc: refined to process ThermostatProc.complex;

end Thermostat.complex;

process ThermostatProc
features
on_control: out event port;
off_control: out event port;
power : out data port Base_Types::Float;
t_out : out data port Base_Types::Float;
t_in: in data port Base_Types::Float;
curr_temp : in data port Base_Types::Float;

end ThermostatProc;

process implementation ThermostatProc.simple
subcomponents
ctrlThread: thread ThermostatThread.simple;
connections
O1: port ctrlThread.on_control -> on_control;
O2: port ctrlThread.off_control -> off_control;
O3: port ctrlThread.power -> power;
O4: port ctrlThread.t_out -> t_out;
I1: port t_in -> ctrlThread.t_in;
I2: port curr_temp -> ctrlThread.curr_temp;

end ThermostatProc.simple;

process implementation ThermostatProc.complex extends ThermostatProc.simple
subcomponents
ctrlThread: refined to thread ThermostatThread.complex;

end ThermostatProc.complex;

thread ThermostatThread
features
on_control: out event port;
off_control: out event port;
power : out data port Base_Types::Float;
t_out : out data port Base_Types::Float;
t_in: in data port Base_Types::Float;
curr_temp : in data port Base_Types::Float;

111

properties
Dispatch_Protocol => Periodic;

end ThermostatThread;

thread implementation ThermostatThread.simple
subcomponents
temp_min : Data Base_Types::Float

{Data_Model::Initial_Value => ("20");};
temp_max : Data Base_Types::Float

{Data_Model::Initial_Value => ("50");};
annex behavior_specification{**

variables
a : Base_Types::Float;

states
init : initial complete state;
exec : state;

transitions
init -[on dispatch]-> exec {

t_out := curr_temp
};

exec -[true]-> init {
a := -(curr_temp - t_in);
if(a > 10){

power := 5;
on_control!

}
elsif(a > 3){

power := 3;
on_control!

}
else{

power := 0;
off_control!

}
end if

};
**};

end ThermostatThread.simple;

thread implementation ThermostatThread.complex
extends ThermostatThread.simple

annex behavior_specification{**
variables

a : Base_Types::Float;
states

init : initial complete state;
exec : state;

transitions

112

init -[on dispatch]-> exec {
t_out := curr_temp
};

exec -[curr_temp > temp_max]-> init {
off_control!;
power := 0
};

exec -[curr_temp < temp_min]-> init {
on_control!;
power := 10
};

exec -[otherwise]-> init {
a := -(curr_temp - t_in);

if(a > 10){
power := 5;
on_control!
}
elsif(a > 5){
power := 4;
on_control!
}
elsif(a > 3){
power := 3;
on_control!
}
elsif(a > 0){
power := 2;
on_control!
}
else{
power := 0;
off_control!
}
end if
};

**};
end ThermostatThread.complex;
end Thermostat;

--- Thermostat controller component
package Thermostat2side
public
with Base_Types;
with Data_Model;

113

system Thermostat2side
features
power: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
t_out: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
t_in1: in data port Base_Types::Float;
t_in2: in data port Base_Types::Float;
curr_temp: in data port Base_Types::Float;
on_control: out event port;
off_control: out event port;

end Thermostat2side;

system implementation Thermostat2side.simple
subcomponents
ctrlProc: process ThermostatProc.simple;
connections
O1: port ctrlProc.on_control -> on_control;
O2: port ctrlProc.off_control -> off_control;
O3: port ctrlProc.power -> power;
O4: port ctrlProc.t_out -> t_out;
I1: port t_in1 -> ctrlProc.t_in1;
I2: port t_in2 -> ctrlProc.t_in2;
I3: port curr_temp -> ctrlProc.curr_temp;

end Thermostat2side.simple;

system implementation Thermostat2side.complex extends Thermostat2side.simple
subcomponents
ctrlProc: refined to process ThermostatProc.complex;

end Thermostat2side.complex;

process ThermostatProc
features
power: out data port Base_Types::Float;
t_out: out data port Base_Types::Float;
t_in1: in data port Base_Types::Float;
t_in2: in data port Base_Types::Float;
curr_temp: in data port Base_Types::Float;
on_control: out event port;
off_control: out event port;

end ThermostatProc;

process implementation ThermostatProc.simple
subcomponents
ctrlThread: thread ThermostatThread.simple;
connections
O1: port ctrlThread.on_control -> on_control;
O2: port ctrlThread.off_control -> off_control;
O3: port ctrlThread.power -> power;
O4: port ctrlThread.t_out -> t_out;

114

I1: port t_in1 -> ctrlThread.t_in1;
I2: port t_in2 -> ctrlThread.t_in2;
I3: port curr_temp -> ctrlThread.curr_temp;

end ThermostatProc.simple;

process implementation ThermostatProc.complex extends ThermostatProc.simple
subcomponents
ctrlThread: refined to thread ThermostatThread.complex;

end ThermostatProc.complex;

thread ThermostatThread
features
power: out data port Base_Types::Float;
t_out: out data port Base_Types::Float;
t_in1: in data port Base_Types::Float;
t_in2: in data port Base_Types::Float;
curr_temp: in data port Base_Types::Float;
on_control: out event port;
off_control: out event port;
properties
Dispatch_Protocol => Periodic;

end ThermostatThread;

thread implementation ThermostatThread.simple
subcomponents
temp_min: Data Base_Types::Float {Data_Model::Initial_Value => ("20");};
temp_max: Data Base_Types::Float {Data_Model::Initial_Value => ("50");};

annex behavior_specification {**
variables
a : Base_Types::Float;

states
init : initial complete state;
exec : state;

transitions
init -[on dispatch]-> exec {
t_out := curr_temp

};
exec -[true]-> init {

a := -(curr_temp - t_in1);
a := a - (curr_temp - t_in2);
if(a > 10){

power := 5;
on_control!

}
elsif(a > 3){

power := 3;
on_control!

}
else{

power := 0;

115

off_control!
}
end if

};
**};

end ThermostatThread.simple;

thread implementation ThermostatThread.complex
extends ThermostatThread.simple

annex behavior_specification {**
variables

a : Base_Types::Float;
states

init : initial complete state;
exec : state;

transitions
init -[on dispatch]-> exec {
t_out := curr_temp

};
exec -[curr_temp > temp_max]-> init {

off_control !;
power := 0

};
exec -[curr_temp < temp_min]-> init {

on_control !;
power := 10

};
exec -[otherwise]-> init {

a := -(curr_temp - t_in1);
a := a - (curr_temp - t_in2);

if(a > 10){
power := 5;
on_control!
}
elsif(a > 5){
power := 4;
on_control!
}
elsif(a > 3){
power := 3;
on_control!
}
elsif(a > 0){
power := 2;
on_control!
}
else{
power := 0;
off_control!
}

116

end if
};

**};
end ThermostatThread.complex;
end Thermostat2side;

--- Environemnt component
package RoomEnv
public

with Base_Types;
with Hybrid_SynchAADL;
with Data_Model;

system RoomEnv
features

temp : out data port Base_Types::Float
{Data_Model::Initial_Value => ("0");};

power : in data port Base_Types::Float;
on_control: in event port;
off_control : in event port;

properties
Hybrid_SynchAADL::isEnvironment => true;

end RoomEnv;

system implementation RoomEnv.impl
subcomponents

x: data Base_Types::Float;
p: data Base_Types::Float {Data_Model::Initial_Value => ("0");};

connections
C: port x -> temp;
P: port power -> p;

modes
off: initial mode;
on: mode;

off -[on_control]-> on;
off -[off_control]-> off;

on -[on_control]-> on;
on -[off_control]-> off;

properties
Hybrid_SynchAADL::ContinuousDynamics =>

"x(t) = x(0) + (0.01 * p) * t; " in modes (on),
"x(t) = x(0) - (0.001 * t);" in modes (off);

end RoomEnv.impl;
end RoomEnv;

117

B Hybrid Automata Components

This section shows the hybrid automata components of the benchmark mod-
els in Figures 26–37. Because we use two kinds of the controllers with different
complexity, there are two different hybrid automata components for each model.
Each model with the simple controller has 3 controller transitions labeld by
ControllerTransition. However, For drone models with complex controller, there
are 25 controller transitions and additional variables for the y-axis. For ther-
mostat and wateratank models with complex controller, there are 5 controller
transitions.

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x	&	vx_samp :=	vx

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	vx &	
vx’	==	ax	&
ax’	==	0	&

x_samp’	==	0	&
vx_samp’	==	0	&
x_out’	==	0	&
vx_out’	==	0

Sampling
localTime <=	ub_resp +	2	*	clockSkew

x’	==	vx &	
vx’	==	ax	&
ax’	==	0	&

x_samp’	==	0	&
vx_samp’	==	0	&
x_out’	==	0	&
vx_out’	==	0

Actuation
localTime <=	period

x’	==	vx &	
vx’	==	ax	&
ax’	==	0	&

x_samp’	==	0	&
vx_samp’	==	0	&
x_out’	==	0	&
vx_out’	==	0

Synch
localTime ==	period

x_out :=	x_samp &	vx_out :=	vx_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

-(DroneSpec_A *	(x_samp – x_in +	DroneSpec_Gamma *	(vx_samp – vx_in))	>	0.5
ax	:=	40
…

ControllerTransition3

Fig. 26. Hybtid automaton component for drone rendezvous with simple control logic
and double-integrator dynamics

C More Details on Experimental Evaluation

This section shows the entire tables used in Section 7. All the tables show the time
results in seconds. Tables 3–6 for Section 7.1 show the results for all bound. Table

118

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x	&	vx_samp :=	vx &
y_samp :=	y	&	vy_samp :=	vy

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	vx &	y’	==	vy &	
vx’	==	ax	&	vy’	==	ay	&
ax’	==	0	&	ay’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&
vx_samp’	==	0	&	vy_samp’	==	0	&

x_out’	==	0	&	y_out’	==	0	&
vx_out’	==	0	&	vy_out’															

Sampling
localTime <=	ub_resp +	2	*	clockSkew

Actuation
localTime <=	period

Synch
localTime ==	period

x_out :=	x_samp &	vx_out :=	vx_samp &
y_out :=	y_samp &	vy_out :=	vy_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

-(DroneSpec_A *	(x_samp – x_in +	DroneSpec_Gamma *	(vx_samp – vx_in))	>	0.5 &

ax	:=	40	&	ay	:=	40
…

ControllerTransition25

-(DroneSpec_A *	(y_samp – y_in +	DroneSpec_Gamma *	(vy_samp – vy_in))	>	0.5

x’	==	vx &	y’	==	vy &	
vx’	==	ax	&	vy’	==	ay	&
ax’	==	0	&	ay’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&
vx_samp’	==	0	&	vy_samp’	==	0	&

x_out’	==	0	&	y_out’	==	0	&
vx_out’	==	0	&	vy_out’															

x’	==	vx &	y’	==	vy &	
vx’	==	ax	&	vy’	==	ay	&
ax’	==	0	&	ay’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&
vx_samp’	==	0	&	vy_samp’	==	0	&

x_out’	==	0	&	y_out’	==	0	&
vx_out’	==	0	&	vy_out’															

Fig. 27. Hybtid automaton component for drone rendezvous with complex control logic
and double-integrator dynamics

7 used in Section 7.2 provides additional information about standard deviations
for five repeated experiments. Tables 8 for Section 7.3 and 9 for Section 7.4
show detailed data for all cases of the benchmark models including those shown
in Figures 24 and 25, respectively.

119

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x	&	vx_samp :=	vx

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	vx &	
vx’	==	ax	&
ax’	==	0	&

x_samp’	==	0	&
vx_samp’	==	0	&
x_out’	==	0	&
vx_out’	==	0 &

refVX_prev_in’	==	0	

Sampling
localTime <=	ub_resp +	2	*	clockSkew

Actuation
localTime <=	period

Synch
localTime ==	period

x_out :=	x_samp &	vx_out :=	vx_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

ax	:=	40
…

ControllerTransition3

x’	==	vx &	
vx’	==	ax	&
ax’	==	0	&

x_samp’	==	0	&
vx_samp’	==	0	&
x_out’	==	0	&
vx_out’	==	0 &

refVX_prev_in’	==	0	

x’	==	vx &	
vx’	==	ax	&
ax’	==	0	&

x_samp’	==	0	&
vx_samp’	==	0	&
x_out’	==	0	&
vx_out’	==	0 &

refVX_prev_in’	==	0	

-((refVX_in - refVX_prev_in)	– (DroneSpec_Alpha *	(x_samp – offsetX – refX_in
+	DroneSpec_Gamma *	(vx_samp – refVX_in))	– (DroneSpec_A *	(x_samp – offsetX – x_in

+	DroneSpec_Gamma *	(vx_samp – vx_in))))	>	0.5

Fig. 28. Hybtid automaton component for drone formation with simple control logic
and double-integrator dynamics

120

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x	&	vx_samp :=	vx &
y_samp :=	y	&	vy_samp :=	vy

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	vx &	y’	==	vy &	
vx’	==	ax	&	vy’	==	ay	&
ax’	==	0	&	ay’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&	
vx_samp’	==	0	&	vy_samp’	==	0	&

x_out’	==	0	&	y_out’	==	0	&
vx_out’	==	0 &	vy_out’	==	0	&

refVX_prev_in’	==	0	&	refVY_prev_in’	==	0

Sampling
localTime <=	ub_resp +	2	*	clockSkew

Actuation
localTime <=	period

Synch
localTime ==	period

x_out :=	x_samp &	vx_out :=	vx_samp &
y_out :=	y_samp &	vy_out :=	vy_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

ax	:=	40	&	ay:=40
…

ControllerTransition25

x’	==	vx &	y’	==	vy &	
vx’	==	ax	&	vy’	==	ay	&
ax’	==	0	&	ay’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&	
vx_samp’	==	0	&	vy_samp’	==	0	&

x_out’	==	0	&	y_out’	==	0	&
vx_out’	==	0 &	vy_out’	==	0	&

refVX_prev_in’	==	0	&	refVY_prev_in’	==	0

x’	==	vx &	y’	==	vy &	
vx’	==	ax	&	vy’	==	ay	&
ax’	==	0	&	ay’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&	
vx_samp’	==	0	&	vy_samp’	==	0	&

x_out’	==	0	&	y_out’	==	0	&
vx_out’	==	0 &	vy_out’	==	0	&

refVX_prev_in’	==	0	&	refVY_prev_in’	==	0

-((refVX_in - refVX_prev_in)	– (DroneSpec_Alpha *	(x_samp – offsetX – refX_in
+	DroneSpec_Gamma *	(vx_samp – refVX_in))	– (DroneSpec_A *	(x_samp – offsetX – x_in

+	DroneSpec_Gamma *	(vx_samp – vx_in))))	>	0.5 &

-((refVY_in - refVY_prev_in)	– (DroneSpec_Alpha *	(y_samp – offsetY – refY_in
+	DroneSpec_Gamma *	(vy_samp – refVY_in))	– (DroneSpec_A *	(y_samp – offsetY – y_in

+	DroneSpec_Gamma *	(vy_samp – vy_in))))	>	0.5

Fig. 29. Hybtid automaton component for drone formation with complex control logic
and double-integrator dynamics

121

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	vx &	
vx’	==	0	&

x_samp’	==	0	&
x_out’	==	0	&

Sampling
localTime <=	ub_resp +	2	*	clockSkew

x’	==	vx &	
vx’	==	0	&

x_samp’	==	0	&
x_out’	==	0	&

Actuation
localTime <=	period

x’	==	vx &	
vx’	==	0	&

x_samp’	==	0	&
x_out’	==	0	&

Synch
localTime ==	period
x_out :=	x_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

-(DroneSpec_A *	(x_samp – x_in))	>	1
vx :=	2
…

ControllerTransition3

Fig. 30. Hybtid automaton component for drone rendezvous with simple control logic
and single-integrator dynamics

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x	&	y_samp :=	y

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	vx &	y’	==	vy &	
vx’	==	0	&	vy’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&
x_out’	==	0	&	y_out’	==	0	

Sampling
localTime <=	ub_resp +	2	*	clockSkew

Actuation
localTime <=	period

Synch
localTime ==	period
x_out :=	x_samp &
y_out :=	y_samp

x’	==	vx &	y’	==	vy &	
vx’	==	0	&	vy’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&
x_out’	==	0	&	y_out’	==	0	

x’	==	vx &	y’	==	vy &	
vx’	==	0	&	vy’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&
x_out’	==	0	&	y_out’	==	0	

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

-(DroneSpec_A *	(x_samp – x_in))	>	1	&

vx :=	2	&	vy :=	2
…

ControllerTransition25

-(DroneSpec_A *	(y_samp – y_in))	>	1

Fig. 31. Hybtid automaton component for drone rendezvous with complex control logic
and single-integrator dynamics

122

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	vx &	
vx’	==	0	&

x_samp’	==	0	&
x_out’	==	0	&

refX_prev_in’	==	0	

Sampling
localTime <=	ub_resp +	2	*	clockSkew

x’	==	vx &	
vx’	==	0	&

x_samp’	==	0	&
x_out’	==	0	&

refX_prev_in’	==	0

Actuation
localTime <=	period

x’	==	vx &	
vx’	==	0	&

x_samp’	==	0	&
x_out’	==	0	&

refX_prev_in’	==	0

Synch
localTime ==	period
x_out :=	x_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

(refX_in – refX_prev_in)	– (DroneSpec_Alpha *	(x_samp – offsetX – refX_in))
– (DroneSpec_A *	(x_samp – offsetX – x_in))	>	1

vx :=	2
…

ControllerTransition3

Fig. 32. Hybtid automaton component for drone formation with simple control logic
and single-integrator dynamics

123

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x	&	y_samp :=	y

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	vx &	y’	==	vy
vx’	==	0	&	vy’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&
x_out’	==	0	&	y_out’	==	0	&

refX_prev_in’	==	0	&	refY_prev_in’	==	0				

Sampling
localTime <=	ub_resp +	2	*	clockSkew

Actuation
localTime <=	period

Synch
localTime ==	period
x_out :=	x_samp &
y_out :=	y_samp

x’	==	vx &	y’	==	vy
vx’	==	0	&	vy’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&
x_out’	==	0	&	y_out’	==	0	&

refX_prev_in’	==	0	&	refY_prev_in’	==	0				

x’	==	vx &	y’	==	vy
vx’	==	0	&	vy’	==	0	&

x_samp’	==	0	&	y_samp’	==	0	&
x_out’	==	0	&	y_out’	==	0	&

refX_prev_in’	==	0	&	refY_prev_in’	==	0				

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

(refX_in – refX_prev_in)	– (DroneSpec_Alpha *	(x_samp – offsetX – refX_in))
– (DroneSpec_A *	(x_samp – offsetX – x_in))	>	1	&

vx :=	2	&	vy :=	2
…

ControllerTransition25

(refY_in – refY_prev_in)	– (DroneSpec_Alpha *	(y_samp – offsetY – refY_in))
– (DroneSpec_A *	(y_samp – offsetY – y_in))	>	1

Fig. 33. Hybtid automaton component for drone formation with complex control logic
and single-integrator dynamics

124

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	10	*	power	&	
power’	==	0	&
x_samp’	==	0	&
x_out’	==	0	&

Sampling
localTime <=	ub_resp +	2	*	clockSkew

x’	==	10	*	power	&	
power’	==	0	&
x_samp’	==	0	&
x_out’	==	0	&

Actuation
localTime <=	period
x’	==	10	&	power	&	
power’	==	0	&
x_samp’	==	0	&
x_out’	==	0	&

Synch
localTime ==	period
x_out :=	x_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

- (x_samp – x_in))	>	10
power	:=	5

…
ControllerTransition3

Fig. 34. Hybtid automaton component for networked thermostat with simple control
logic

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

x_samp :=	x

NewRound
localTime <=	ub_samp +	2	*	clockSkew

x’	==	10	*	power	&	
power’	==	0	&
x_samp’	==	0	&
x_out’	==	0	&

Sampling
localTime <=	ub_resp +	2	*	clockSkew

x’	==	10	*	power	&	
power’	==	0	&
x_samp’	==	0	&
x_out’	==	0	&

Actuation
localTime <=	period
x’	==	10	&	power	&	
power’	==	0	&
x_samp’	==	0	&
x_out’	==	0	&

Synch
localTime ==	period
x_out :=	x_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

- (x_samp – x_in))	>	10
power	:=	5

…
ControllerTransition6

Fig. 35. Hybtid automaton component for networked thermostat with complex control
logic

125

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

water_samp :=	decreased	&
water	=	water	+	water_in

NewRound
localTime <=	ub_samp +	2	*	clockSkew

water’	==	-50	&	
Water_samp’	==	0	&
decreased’	==	50	&
water_out’	==	0

Sampling
localTime <=	ub_resp +	2	*	clockSkew

Actuation
localTime <=	period

Synch
localTime ==	period
x_out :=	x_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

water	<=	33
water	:=	water	+	0.5

…
ControllerTransition3

water’	==	-50	&	
Water_samp’	==	0	&
decreased’	==	50	&
water_out’	==	0

water’	==	-50	&	
Water_samp’	==	0	&
decreased’	==	50	&
water_out’	==	0

Fig. 36. Hybtid automaton component for networked waterTank with simple control
logic

Sampling
lb_samp <=	localTime <=	ub_samp +	2	*	clockSkew

water_samp :=	decreased	&
water	=	water	+	water_in

NewRound
localTime <=	ub_samp +	2	*	clockSkew

water’	==	-50	&	
Water_samp’	==	0	&
decreased’	==	50	&
water_out’	==	0

Sampling
localTime <=	ub_resp +	2	*	clockSkew

Actuation
localTime <=	period

Synch
localTime ==	period
x_out :=	x_samp

ControllerTransition1
lb_resp <=	lcoalTime <=	ub_resp +	2	*	clockSkew &

water	<=	33
water	:=	water	+	0.5

…
ControllerTransition6

water’	==	-50	&	
Water_samp’	==	0	&
decreased’	==	50	&
water_out’	==	0

water’	==	-50	&	
Water_samp’	==	0	&
decreased’	==	50	&
water_out’	==	0

Fig. 37. Hybtid automaton component for networked waterTank with complex control
logic

126

B	=	1 B	=	2 B	=	3 B	=	4 B	=	5 B	=	1 B	=	2 B	=	3 B	=	4 B	=	5
Time Time Time Time Time Time Time Time Time Time

HSADDL 0.30 0.48 0.82 1.46 2.71 HSADDL 0.30 0.44 0.66 0.96 1.34
HyComp 0.05 0.17 0.28 0.83 1.62 HyComp 0.03 0.06 0.14 0.27 0.53
SpaceEx 0.05 0.29 0.75 1.19 2.33 SpaceEx 0.05 0.14 0.34 0.60 0.81
dReach 1.30 26.00 341.58 - - dReach 1.66 53.07 1080.83 - -
Flow* 1.91 10.71 48.35 336.85 3196.42 Flow* 2.82 45.26 1070.07 - -
HSADDL 0.36 0.66 1.29 2.51 4.72 HSADDL 0.39 0.63 1.02 1.62 2.52
HyComp 0.09 0.40 1.24 3.97 8.52 HyComp 0.08 0.36 0.91 1.97 5.99
SpaceEx 0.96 103.68 696.38 - - SpaceEx 0.76 20.75 97.50 335.50 877.17
dReach 57.52 - - - - dReach 52.82 - - - -
Flow* 32.08 1240.68 - - - Flow* 96.36 - - - -
HSADDL 0.41 0.88 1.90 3.76 7.79 HSADDL 0.45 0.80 1.48 2.55 4.16
HyComp 0.20 0.84 5.69 11.23 37.87 HyComp 0.20 1.01 2.94 8.80 37.12
SpaceEx 34.47 - - - - SpaceEx 27.96 - - - -
dReach - - - - - dReach - - - - -
Flow* 977.71 - - - - Flow* - - - - -
HSADDL 0.25 0.39 0.65 1.12 1.99 HSADDL 0.34 0.53 0.90 1.61 3.01
HyComp 0.04 0.09 0.23 0.52 0.84 HyComp 0.08 0.30 1.42 5.37 13.28
SpaceEx 0.02 0.53 4.98 6.60 7.96 SpaceEx 0.21 91.91 - - -
dReach 1.97 56.26 1382.67 - - dReach 139.03 - - - -
Flow* 1.83 18.64 205.94 3552.78 - Flow* 41.60 1464.69 - - -
HSADDL 0.29 0.51 0.97 1.93 3.90 HSADDL 0.38 0.66 1.31 2.81 7.30
HyComp 0.08 0.33 0.79 2.05 3.97 HyComp 0.17 0.89 6.18 15.93 41.31
SpaceEx 0.21 34.33 2230.25 - - SpaceEx 2.77 - - - -
dReach 107.05 - - - - dReach - - - - -
Flow* 36.65 2725.51 - - - Flow* 873.41 - - - -
HSADDL 0.33 0.65 1.37 2.90 5.84 HSADDL 0.43 0.83 1.77 3.82 7.90
HyComp 0.15 0.68 2.00 7.12 17.23 HyComp 0.23 2.73 21.89 52.24 182.10
SpaceEx 4.53 - - - - SpaceEx 114.79 - - - -
dReach - - - - - dReach - - - - -
Flow* 1205.17 - - - - Flow* - - - - -
HSADDL 0.30 0.46 0.79 3.68 - HSADDL 0.42 0.66 2.18 - -
SpaceEx 1.19 15.07 1147.62 - - SpaceEx 70.79 - - - -
dReach 4.20 128.23 2156.23 - - dReach 360.40 - - - -
Flow* 10.20 232.53 - - - Flow* 116.81 - - - -
HSADDL 0.35 0.63 1.24 37.76 - HSADDL 0.50 0.85 1.75 - -
SpaceEx 81.12 - - - - SpaceEx - - - - -
dReach 274.25 - - - - dReach - - - - -
Flow* 230.12 - - - - Flow* 3411.46 - - - -
HSADDL 0.41 0.79 1.88 6.87 - HSADDL 0.57 1.09 2.50 - -
SpaceEx - - - - - SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

2

3

4

N Tool

Dr
on

e	
Fo
rm

at
io
n	
(S
in
gl
e)

Dr
on

e	
Fo
rm

at
io
n	
(D
ou

bl
e)

Dr
on

e	
Re

nd
ez
vo
us
	(D

ou
bl
e)

Dr
on

e	
Re

nd
ez
vo
us
	(S
in
gl
e)

W
at
er
Ta
nk

Model

Th
er
m
os
ta
t

Model N Tool

Table 3. Comparison of HybridSynchAADL and the other tools for Inv> at all bounds
in using simplified control logic. The ‘-’ represents a timeout

127

B	=	1 B	=	2 B	=	3 B	=	4 B	=	5 B	=	1 B	=	2 B	=	3 B	=	4 B	=	5
Time Time Time Time Time Time Time Time Time Time

HSADDL 0.32 0.52 0.88 1.56 7.61 HSADDL 0.32 0.48 1.81
HyComp 0.07 0.30 0.76 1.79 2.63 HyComp 0.04 0.08 0.12
SpaceEx 0.45 0.29 0.67 1.19 2.16 SpaceEx 0.04 0.10 0.18
dReach - - - - - dReach - - - - -
Flow* 2.05 12.08 15.50 8.41 Flow* 0.99
HSADDL 0.38 0.70 1.41 2.71 15.27 HSADDL 0.40 0.68 3.09
HyComp 0.22 1.55 5.35 12.71 15.50 HyComp 0.17 0.84 1.86
SpaceEx 0.96 100.19 708.21 - - SpaceEx 0.88 13.48 74.37
dReach - - - - - dReach - - - - -
Flow* 36.22 1287.38 - 1718.11 Flow* 5.73
HSADDL 0.45 0.94 2.11 10.65 HSADDL 0.46 0.86 4.82
HyComp 0.60 5.67 31.62 43.06 HyComp 0.41 1.95 4.19
SpaceEx 32.72 - - - - SpaceEx 40.37 - - - -
dReach - - - - - dReach - - - - -
Flow* 1072.26 - - - - Flow* 28.93
HSADDL 0.30 0.46 2.36 HSADDL 0.35 0.62 4.22 15.54
HyComp 0.16 5.89 8.86 HyComp 4.64 16.36 - - -
SpaceEx 0.02 0.38 5.08 SpaceEx 0.20 93.96 - - -
dReach - - - - - dReach - - - - -
Flow* 1.87 12.58 167.25 Flow* 43.84 1586.32 - - -
HSADDL 0.34 0.72 4.16 HSADDL 0.45 2.54
HyComp 0.18 2.06 11.52 HyComp 0.43 2.59
SpaceEx 0.17 35.91 2676.59 SpaceEx 2.51 - - - -
dReach - - - - - dReach - - - - -
Flow* 62.52 380.44 Flow* 45.30
HSADDL 0.46 1.32 5.94 HSADDL 0.52 5.16
HyComp 0.78 106.79 192.58 HyComp 2.64 20.30
SpaceEx 4.48 - - - - SpaceEx 105.87 - - - -
dReach - - - - - dReach - - - - -
Flow* 2187.61 - 838.04 Flow* - 291.32
HSADDL 0.34 1.36 HSADDL 0.45 2.18
SpaceEx 1.16 15.21 - - SpaceEx 70.19 - - - -
dReach - - - - - dReach - - - - -
Flow* 5.76 2.17 Flow* 136.90 14.02
HSADDL 0.49 16.33 HSADDL 0.63 2.69
SpaceEx 51.12 - - - - SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* 119.46 25.39 Flow* 1586.93
HSADDL 0.60 2.83 HSADDL 0.76 3.79
SpaceEx - - - - - SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -

3

4

4

2

3

4

2

2

3

Model N Tool

2

3

N Tool

W
at
er
Ta
nk

Dr
on

e	
Fo
rm

at
io
n	
(S
in
gl
e)

Dr
on

e	
Fo
rm

at
io
n	
(D
ou

bl
e)

Model

4Dr
on

e	
Re

nd
ez
vo
us
	(D

ou
bl
e) 2

3

4

Dr
on

e	
Re

nd
ez
vo
us
	(S
in
gl
e)

2

3

4

Th
er
m
os
ta
t

Table 4. Comparison of HybridSynchAADL and the other tools for Inv⊥ at all bounds
in using simplified control logic. The ‘-’ means that a counterexample is not found before
a timeout.

128

B	=	1 B	=	2 B	=	3 B	=	4 B	=	5 B	=	1 B	=	2 B	=	3 B	=	4 B	=	5
Time Time Time Time Time Time Time Time Time Time

HSADDL 0.31 0.56 1.02 1.88 3.40 HSADDL 0.32 0.51 0.77 1.15 1.67
HyComp 0.05 0.13 0.40 0.91 3.97 HyComp 0.05 0.15 0.47 2.01 4.34
SpaceEx 0.03 0.30 1.76 2.81 4.72 SpaceEx 0.05 0.17 0.33 0.65 1.36
dReach 12.62 1341.60 - - - dReach 980.80 - - - -
Flow* 1.56 9.07 41.97 318.79 - Flow* 2.99 96.50 - - -
HSADDL 0.37 0.77 1.56 3.08 6.00 HSADDL 0.43 0.74 1.26 2.10 3.28
HyComp 0.13 0.45 1.61 4.27 12.09 HyComp 0.10 0.53 1.77 5.55 14.95
SpaceEx 0.23 98.91 - - - SpaceEx 3.88 331.97 - - -
dReach - - - - - dReach - - - - -
Flow* 332.68 1246.84 - - - Flow* 180.26 - - - -
HSADDL 0.45 1.02 2.30 4.88 10.84 HSADDL 0.51 1.01 1.89 3.41 5.62
HyComp 0.26 1.15 5.99 32.04 51.68 HyComp 0.21 1.15 5.45 20.26 98.76
SpaceEx 2.49 - - - - SpaceEx 43.78 3181.84 - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -
HSADDL 0.64 1.58 3.16 5.44 10.62 HSADDL 0.90 2.28 4.70 8.89 16.24
HyComp 0.09 0.20 1.22 1.74 6.24 HyComp 0.18 1.26 7.44 18.59 1586.12
SpaceEx 0.47 1551.43 - - - SpaceEx 27.74 - - - -
dReach 1982.70 - - - - dReach 930.90 - - - -
Flow* 12.29 1267.75 - - - Flow* 749.97 - - - -
HSADDL 0.90 2.50 5.39 9.86 18.86 HSADDL 1.23 3.42 7.90 16.31 60.41
HyComp 0.19 1.03 2.02 18.86 108.81 HyComp 0.33 3.99 101.91 652.21 -
SpaceEx 16.59 - - - - SpaceEx 501.35 - - - -
dReach - - - - - dReach - - - - -
Flow* 422.58 - - - - Flow* - - - - -
HSADDL 1.16 3.48 8.10 15.95 32.23 HSADDL 1.54 4.74 11.71 23.81 62.24
HyComp 0.32 2.23 21.01 120.69 150.23 HyComp 0.59 5.94 91.42 844.42 -
SpaceEx 470.15 - - - - SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -
HSADDL 0.93 2.40 7.74 - - HSADDL 1.36 3.61 8.13 - -
SpaceEx 59.81 - - - - SpaceEx - - - - -
dReach 3156.20 - - - - dReach 2124.20 - - - -
Flow* - - - - - Flow* - - - - -
HSADDL 1.27 3.72 12.43 - - HSADDL 1.83 5.52 - - -
SpaceEx - - - - - SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -
HSADDL 1.65 5.31 - - - HSADDL 2.33 7.70 - - -
SpaceEx - - - - - SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -

Tool

2

3

4

N

2

3

4

2

3

4

2

3

4

ToolModel Model

W
at
er
Ta
nk

N

2

3

4
Dr
on

e	
Fo
rm

at
io
n	
(S
in
gl
e)

Dr
on

e	
Fo
rm

at
io
n	
(D
ou

bl
e)

Th
er
m
os
ta
t

Dr
on

e	
Re

nd
ez
vo
us
	(S
in
gl
e)

Dr
on

e	
Re

nd
ez
vo
us
	(D

ou
bl
e)

2

3

4

Table 5. Comparison of HybridSynchAADL and the other tools for Inv> at all bounds
in using complex control logic. The ‘-’ represents a timeout

129

B	=	1 B	=	2 B	=	3 B	=	4 B	=	5 B	=	1 B	=	2 B	=	3 B	=	4 B	=	5
Time Time Time Time Time Time Time Time Time Time

HSADDL 0.32 0.57 1.11 1.80 9.57 HSADDL 0.34 0.55 0.88 1.36 5.81
HyComp 0.07 0.31 0.66 1.97 3.05 HyComp 0.06 0.24 0.64 2.25 3.59
SpaceEx 0.03 0.31 1.71 2.73 4.30 SpaceEx 0.05 0.15 0.38 0.81 1.83
dReach - - - - - dReach - - - - -
Flow* 1.62 9.78 45.53 Flow* 2.74 13.86
HSADDL 0.40 0.80 1.64 2.73 19.04 HSADDL 0.44 0.78 1.39 2.37 11.96
HyComp 0.31 1.46 4.57 19.34 28.35 HyComp 0.20 1.08 3.28 39.76 61.80
SpaceEx 0.23 95.67 - - - SpaceEx 0.99 21.95 1218.34 - -
dReach - - - - - dReach - - - - -
Flow* 34.06 - - - - Flow* 259.13 51.76
HSADDL 0.48 1.09 2.78 15.76 HSADDL 0.52 1.08 2.09 11.76
HyComp 0.81 5.45 22.35 30.20 HyComp 0.53 3.69 20.64 1261.85
SpaceEx 2.65 - - - - SpaceEx 645.10 - - - -
dReach - - - - - dReach - - - - -
Flow* 1016.63 - - - - Flow* - 13.13
HSADDL 0.68 1.64 3.72 84.84 HSADDL 0.94 2.49 33.22
HyComp 1.33 15.36 295.24 408.83 HyComp 1.61 991.75 648.03
SpaceEx 0.46 12.84 - - - SpaceEx 25.05 - - - -
dReach - - - - - dReach - - - - -
Flow* 12.71 195.14 - - - Flow* 886.24 - - - -
HSADDL 0.97 2.92 17.56 HSADDL 1.29 10.52
HyComp 9.37 310.20 357.23 HyComp 4.50 32.27
SpaceEx 12.06 - - - - SpaceEx 380.90 - - - -
dReach - - - - - dReach - - - - -
Flow* 696.93 96.11 108.53 Flow* 1034.18 - - - -
HSADDL 1.30 5.56 17.02 66.71 HSADDL 1.78 6.15 88.46
HyComp 198.82 - - - - HyComp 26.14 - - - -
SpaceEx 694.82 - - - - SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -
HSADDL 0.96 6.65 HSADDL 1.41 15.44
SpaceEx 22.62 881.64 SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -
HSADDL 1.46 11.36 HSADDL 2.02 20.44
SpaceEx - - - - - SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -
HSADDL 1.90 16.71 HSADDL 2.85 26.49
SpaceEx - - - - - SpaceEx - - - - -
dReach - - - - - dReach - - - - -
Flow* - - - - - Flow* - - - - -

Tool

2

3

4

N

2

3

4

2

3

4

2

3

4

ToolModel Model

W
at
er
Ta
nk

N

2

3

4

Dr
on

e	
Fo
rm

at
io
n	
(S
in
gl
e)

Dr
on

e	
Fo
rm

at
io
n	
(D
ou

bl
e)

Th
er
m
os
ta
t

Dr
on

e	
Re

nd
ez
vo
us
	(S
in
gl
e)

Dr
on

e	
Re

nd
ez
vo
us
	(D

ou
bl
e)

2

3

4

Table 6. Comparison of HybridSynchAADL and the other tools for Inv⊥ at all bounds
in using complex control logici. The ‘-’ means that a counterexample is not found before
a timeout.

130

AVG STDEV AVG STDEV AVG STDEV AVG STDEV AVG STDEV
random - - - - - - - - - -

symbolic 0.32 0.01 0.57 0.01 1.08 0.02 1.84 0.04 9.76 0.09
portfolio 0.32 0.01 0.57 0.01 1.08 0.02 1.84 0.04 9.76 0.09
random - - - - - - - - - -

symbolic 0.39 0.00 0.82 0.01 1.67 0.03 3.68 0.07 20.00 0.44
portfolio 0.39 0.00 0.82 0.01 1.67 0.03 3.68 0.07 20.00 0.44
random - - - - - - 12.42 14.63 26.71 29.10

symbolic 0.47 0.01 1.11 0.03 2.67 0.01 16.06 0.37
portfolio 0.47 0.01 1.11 0.03 2.67 0.01 12.42 14.63 16.01 0.34
random - - - - - - - - - -

symbolic 0.33 0.00 0.53 0.01 0.85 0.02 1.32 0.03 6.00 0.06
portfolio 0.33 0.00 0.53 0.01 0.85 0.02 1.32 0.03 6.00 0.06
random - - - - - - - - - -

symbolic 0.43 0.01 0.80 0.01 1.43 0.04 2.45 0.07 12.16 0.09
portfolio 0.43 0.01 0.80 0.01 1.43 0.04 2.45 0.07 12.16 0.09
random - - - - - - - - 46.40 49.23

symbolic 0.54 0.01 1.09 0.01 2.14 0.05 12.15 0.12
portfolio 0.54 0.01 1.09 0.01 2.14 0.05 12.15 0.12 12.27 0.28
random - - - - - - - - - -

symbolic 0.69 0.01 1.70 0.05 3.83 0.10 92.45 1.00
portfolio 0.69 0.01 1.70 0.05 3.83 0.10 92.45 1.00 93.06 2.36
random - - - - 6.31 5.98 0.22 0.14 0.08 0.01

symbolic 0.98 0.02 3.00 0.06 18.06 0.43
portfolio 0.98 0.02 3.00 0.06 6.31 5.98 0.22 0.14 0.08 0.01
random - - - - - - - - 24.30 21.30

symbolic 1.32 0.03 5.66 0.06 17.63 0.22 74.50 1.47
portfolio 1.32 0.03 5.66 0.06 17.63 0.22 74.50 1.47 24.30 21.30
random - - - - - - - - - -

symbolic 0.94 0.01 2.50 0.02 36.38 0.77
portfolio 0.94 0.01 2.50 0.02 36.38 0.77 35.98 0.81 36.26 0.77
random - - - - - - - - 986.46 477.48

symbolic 1.32 0.03 10.64 0.22
portfolio 1.32 0.03 10.64 0.22 10.57 0.09 10.54 0.04 10.71 0.20
random - - - - - - 12.94 4.56 3.18 4.03

symbolic 1.70 0.01 6.18 0.08 98.39 2.56 12.94 4.56 3.18 4.03
portfolio 1.70 0.01 6.18 0.08 98.39 2.56 12.94 4.56 3.18 4.03
random - - 120.98 127.02 0.08 0.05 0.06 0.01 0.06 0.01

symbolic 0.96 0.01 6.68 0.02
portfolio 0.96 0.01 6.68 0.02 0.08 0.05 0.06 0.01 0.06 0.01
random - - 155.62 149.80 0.09 0.00 0.09 0.00 0.09 0.00

symbolic 1.47 0.00 11.41 0.07
portfolio 1.47 0.00 11.41 0.07 0.09 0.00 0.09 0.00 0.09 0.00
random - - 49.52 46.25 0.14 0.00 0.14 0.00 0.14 0.00

symbolic 1.89 0.00 16.79 0.08
portfolio 1.89 0.00 16.79 0.08 0.14 0.00 0.14 0.00 0.14 0.00
random - - - - 1.55 1.49 0.50 0.19 0.96 1.17

symbolic 1.41 0.01 15.22 0.26
portfolio 1.41 0.01 15.22 0.26 1.55 1.49 0.50 0.19 0.96 1.17
random - - - - 0.16 0.06 0.18 0.09 0.15 0.03

symbolic 2.01 0.03 20.23 0.40
portfolio 2.01 0.03 20.23 0.40 0.16 0.06 0.18 0.09 0.15 0.03
random - - 1.24 0.97 0.18 0.03 0.18 0.03 0.18 0.03

symbolic 2.81 0.05 26.28 0.53
portfolio 2.81 0.05 1.24 0.97 0.18 0.03 0.18 0.03 0.18 0.03

D
ro

ne
 re

nd
ez

vo
us

 (s
in

gl
e)

2

3

4

D
ro

ne
 fo

rm
at

io
n

(d
ou

bl
e)

2

3

4

D
ro

ne
 fo

rm
at

io
n

(s
in

gl
e)

2

3

4

D
ro

ne
 re

nd
ez

vo
us

 (d
ou

bl
e)

2

3

4

Method

W
at

er
Ta

nk

2

3

4

Th
er

m
os

ta
t

2

3

4

Model N
B = 4 B = 5

Time Time Time Time
B = 1 B = 2 B = 3

Time

Table 7. HybridSynchAADL portfolio analysis. The ‘-’ means that a counterexample
is not found before a timeout. For symbolic analysis (symbolic), once a counterexample
is found (FO) for one bound T , the results bounds T ′ ≥ T are grayed out.

131

1 0.2 3.5 61.0 2 0.5 0.1 0.7 10 1 0.2 5.8 57.0 2 2.7 0.3 2.8 37
2 0.4 14.5 144.0 3 25.6 3.1 20.7 86 2 0.4 22.2 135.0 3 148.5 18.4 102.1 181
3 0.7 35.8 227.0 4 544.3 54.6 225.0 331 3 0.7 50.5 213.0 4 994.3 129.4 499.3 791
4 1.6 67.2 310.0 5 3675.7 324.4 982.7 1055 4 1.2 90.9 291.0 5 5721.4 776.3 2181.5 3075
1 0.2 5.3 91.0 2 6.0 0.6 6.6 28 1 0.3 8.8 84.0 2 68.0 5.8 51.8 217
2 0.6 24.6 215.0 3 2315.3 270.6 1312.0 976 2 0.6 37.4 200.0 3 - - - -
3 1.3 65.8 339.0 4 - - - - 3 1.2 90.1 316.0 4 - - - -
4 3.7 128.8 463.0 5 - - - - 4 2.2 167.6 432.0 5 - - - -
1 0.3 7.2 121.0 2 67.6 6.1 59.1 82 1 0.4 11.8 111.0 2 1523.0 124.7 940.4 1297
2 0.8 36.2 286.0 3 - - - - 2 0.9 54.9 265.0 3 - - - -
3 2.3 103.3 451.0 4 - - - - 3 2.0 138.7 419.0 4 - - - -
4 7.2 208.2 616.0 5 - - - - 4 3.5 264.0 573.0 5 - - - -
1 0.5 38.1 293.0 2 14.4 1.2 10.0 677 1 0.7 50.7 328.0 2 18.6 1.5 10.0 677
2 1.5 133.9 585.0 3 6099.0 463.8 2185.8 21003 2 2.1 184.6 655.0 3 - - - -
3 2.8 299.6 877.0 4 - - - - 3 4.2 437.2 982.0 4 - - - -
4 4.6 534.2 1169.0 5 - - - - 4 8.0 814.1 1309.0 5 - - - -
1 0.7 57.2 438.0 2 467.3 38.8 260.1 17577 1 1.0 75.6 473.0 2 600.6 47.0 260.1 17577
2 2.2 227.2 875.0 3 - - - - 2 3.1 302.9 945.0 3 - - - -
3 5.0 543.0 1312.0 4 - - - - 3 7.0 756.0 1417.0 4 - - - -
4 8.9 1000.5 1749.0 5 - - - - 4 17.3 1446.3 1889.0 5 - - - -
1 1.0 76.2 583.0 2 - - - - 1 1.3 100.5 618.0 2 - - - -
2 3.2 338.2 1165.0 3 - - - - 2 4.3 440.4 1235.0 3 - - - -
3 7.6 848.8 1747.0 4 - - - - 3 10.4 1148.3 1852.0 4 - - - -
4 14.2 1599.7 2329.0 5 - - - - 4 - - - - - - - -
1 0.7 49.2 293.0 2 15.7 1.3 8.3 485 1 1.1 67.2 328.0 2 21.5 1.7 9.6 443
2 2.2 175.9 585.0 3 - - - - 2 3.3 248.4 655.0 3 - - - -
3 4.6 399.0 877.0 4 - - - - 3 8.1 601.0 982.0 4 - - - -
4 8.9 719.9 1169.0 5 - - - - 4 - 193.5 652.0 - - - -
1 1.1 73.8 438.0 2 456.9 33.8 183.5 10649 1 1.5 100.2 473.0 2 645.6 41.1 173.1 11493
2 3.4 298.2 875.0 3 - - - - 2 5.2 406.2 945.0 3 - - - -
3 7.6 722.7 1312.0 4 - - - - 3 - 324.4 942.0 - - - -
4 15.9 1347.3 1749.0 5 - - - - 4 - 324.4 942.0 - - - -
1 1.4 98.4 583.0 2 - - - - 1 2.0 133.3 618.0 2 - - - -
2 4.9 443.5 1165.0 3 - - - - 2 7.4 589.7 1235.0 3 - - - -
3 11.5 1129.1 1747.0 4 - - - - 3 - - - - - - - -
4 24.4 2152.9 2329.0 5 - - - - 4 - - - - - - - -

StateB
Symbolic with merging Symbolic without merging

Time |Const|
(k)

SMT
call

State Time |Const|
(M)

SMT
call(k)

D
ro

ne
 F

or
m

at
io

n
(D

ou
bl

e) 2

3

4

Model N

D
ro

ne
 F

or
m

at
io

n
(S

in
gl

e) 2

3

4

D
ro

ne
 R

en
de

zv
ou

s (
D

ou
bl

e) 2

3

4

W
at

er
Ta

nk

2

3

4

D
ro

ne
 R

en
de

zv
ou

s (
Si

ng
le

) 2

3

4

|Const|
(M)

SMT
call(k)

State

Th
er

m
os

ta
t

2

3

4

Model N B
Symbolic with merging Symbolic without merging

Time |Const|
(k)

SMT
call

State Time

Table 8. Symbolic analysis with merging and without merging. |Const | denotes the
accumulated size of SMT constraints in thousands.

132

Average
(s) STDEV Average

(s) STDEV Average
(s) STDEV Average

(s) STDEV

50 8.6 4.7 9.9 69.4 37.2 93.0 5,027.4 2,533.6 1,808.9 - - -
100 8.5 4.7 10.0 74.2 42.5 99.8 4,232.3 249.2 1,812.7 - - -
150 10.3 4.8 12.5 127.7 74.5 187.0 6,820.4 1,830.1 2,365.1 - - -
200 9.5 4.1 13.2 149.1 76.4 250.7 - - - - - -
250 13.6 5.8 18.7 332.9 176.5 506.2 - - - - - -
300 14.5 8.2 20.0 391.6 233.9 596.4 - - - - - -
50 7.8 2.4 9.8 79.7 35.3 91.1 5,036.6 1,221.9 1,793.2 - - -

100 8.2 1.7 9.8 60.8 4.0 96.5 5,106.2 1,327.5 1,794.1 - - -
150 9.3 1.5 10.9 84.7 8.7 139.6 5,173.0 925.1 1,876.0 - - -
200 9.0 1.4 11.0 103.1 45.7 158.6 5,364.1 1,258.0 1,878.1 - - -
250 9.7 1.2 12.0 183.4 120.3 235.3 5,162.0 100.7 1,952.5 - - -
300 10.2 3.8 12.1 163.1 80.2 254.2 5,462.6 933.5 1,960.9 - - -
50 8.8 4.5 9.3 67.7 38.0 84.0 1,141.2 648.5 886.1 - - -

100 8.8 5.5 10.7 70.9 43.3 90.5 1,195.2 667.0 939.7 - - -
150 10.1 4.5 11.5 75.9 38.6 97.8 1,229.2 664.5 988.9 - - -
200 15.4 8.5 19.2 92.4 47.5 134.4 3,015.8 1,424.6 2,253.9 - - -
250 15.6 9.2 23.4 109.7 56.5 171.4 3,884.3 1,505.3 2,902.1 - - -
300 20.7 10.2 30.9 131.4 69.5 207.3 5,935.4 230.1 3,923.7 - - -
50 7,163.6 207.5 3,540.3 - - - - - - - - -
10 7,854.2 169.3 3,888.4 - - - - - - - - -

150 8,196.7 265.8 4,037.5 - - - - - - - - -
200 - - - - - - - - - - - -
250 - - - - - - - - - - - -
300 - - - - - - - - - - - -
50 158.8 96.5 148.7 1,700.5 892.2 1,337.2 - - - - - -

100 154.3 4.6 188.2 1,927.1 1,063.6 1,500.6 - - - - - -
150 203.1 91.7 226.2 2,189.1 1,068.1 1,813.1 - - - - - -
200 812.2 89.2 1,121.2 8,882.6 1,830.2 5,495.6 - - - - - -
250 1,616.3 361.3 1,869.6 - - - - - - - - -
300 2,855.1 620.7 2,764.0 - - - - - - - - -
50 - - - - - - - - - - - -

100 - - - - - - - - - - - -
150 - - - - - - - - - - - -
200 - - - - - - - - - - - -
250 - - - - - - - - - - - -
300 - - - - - - - - - - - -

Th
er

m
os

ta
t

D
ro

ne

R
en

de
zv

ou
s

(S
in

gl
e)

D
ro

ne

Fo

rm
at

io
n

(S
in

gl
e)

D
ro

ne

R
en

de
zv

ou
s

(D
ou

bl
e)

D
ro

ne

Fo

rm
at

io
n

(D
ou

bl
e)

W
at

er
Ta

nk

States
(k)

Model B

N = 2 N = 3
|Time sample| = 1 |Time sample| = 2 |Time sample| = 1 |Time sample| = 2

Time
States

(k)

Time
States

(k)

Time
States

(k)

Time

Table 9. Analyzing distributed asynchronous models. |Time sample| is the number of
the predefined values for sampling and actuating times, and the number of concrete
states is written in thousands.

	HybridSynchAADL: Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL

