
HybridSynchAADL Manual

1 Introduction

The HybridSynchAADL tool is a formal modeling and anlaysis tool for vir-
tually synchronous cyber-physical systems with complex control programs, con-
tinous behaviors, bounded clock skews, network delays, and execution times.

The tool provides the HybridSynchAADL modeling language using the
avionics modeling standard AADL [28] and a property specification language to
specify bounded reachability and invariant properties of HybridSynchAADL
models. The tool is implemented as an OSATE plugin which performs various
formal analysis using Maude combined with SMT solving. It provides a symbolic
reachability analysis and randomized simulation.

The architecture of the tool is illustrated in Figure 1. The tool first statically
checks whether a given model is a valid model that satisfies the syntactic con-
straints of HybridSynchAADL. It uses OSATE’s code generation facilities to
synthesize the corresponding Maude model from the validated model. Finally,
our tool invokes Maude and an SMT solver to check whether the model satisfies
given invariant and reachability requirements with respect to the formal seman-
tics of HybridSynchAADL. The Result view in OSATE displays the results
of the analysis in a readable format.

HybridSynchAADL Tool
HybridSynchAADL 

Model

Requirement

OSATE Result View

Code 
Generation

Constraint 
Checking Rewriting 

Logic 
Model

Formal Analysis
Symbolic Reachability 

Randomized Simulation

Fig. 1. The architecture of the HybridSynchAADL tool.

The tool is available at https://hybridsynchaadl.github.io/download which
explains how to download the tool.

2 HybridSynchAADL Language

2.1 AADL Language

The Architecture Analysis & Design Language (AADL) [28] is an industrial mod-
eling standard used in avionics, aerospace, automotive, medical devices, and
robotics to describe an embedded real-time system as an assembly of software

https://hybridsynchaadl.github.io/download
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components mapped onto an execution platform. In AADL, a component type
specifies the component’s interface (e.g., ports) and properties (e.g., periods),
and a component implementation specifies its internal structure as a set of sub-
components and a set of connections linking their ports. An AADL construct
may have properties describing its parameters, declared in property sets.

An AADL model describes a system of hardware and software components.
This manual focuses on the software components, since we use AADL to specify
synchronous designs. Software components include threads that model the appli-
cation software to be executed; process components defining protected memory
that can be accessed by its thread and data subcomponents; and data compo-
nents representing data types. System components are the top-level components.

A port is either a data port, an event port, or an event data port. Event ports
and event data ports support queuing of, respectively, “events” and message data,
while data ports only keep the latest data. Modes represent the operational
states of components. A component can have mode-specific property values,
subcomponents, etc. Mode transitions are triggered by events.

Thread behavior is modeled as a guarded transition system with local vari-
ables using AADL’s Behavior Annex [29]. The actions performed when a tran-
sition is applied may update local variables, call methods, and/or generate new
outputs. Actions are built from basic actions using sequencing, conditionals, and
finite loops. When a thread is activated, transitions are applied; if the result-
ing state is not a complete state, another transition is applied, until a complete
state is reached. The dispatch protocol of a thread determines when a thread is
executed. In particular, a periodic thread is activated at fixed time intervals.

2.2 HybridSynchAADL Modeling Language

This section presents the HybridSynchAADL language for modeling virtually
synchronous cyber-physical systems in AADL. The language can specify environ-
ments with continuous dynamics, synchronous designs of distributed controllers,
and nontrivial interactions between controllers and environments with respect
to imprecise local clocks and sampling and actuation times.

The HybridSynchAADL language is a subset of AADL extended with the
following property set Hybrid_SynchAADL. We use a subset of AADL without
changing the meaning of AADL constructs or adding new a annex—the subset
has the same meaning for synchronous models and asynchronous distributed
implementations—so that AADL experts can easily develop and understand
HybridSynchAADL models.

property set Hybrid_SynchAADL is
Synchronous: inherit aadlboolean applies to (system, process, thread);
isEnvironment: inherit aadlboolean applies to (system);
ContinuousDynamics: aadlstring applies to (system);
Max_Clock_Deviation: inherit Time applies to (system, thread);
Sampling_Time: inherit Time_Range applies to (system, thread);
Response_Time: inherit Time_Range applies to (system, thread);

end Hybrid_SynchAADL;
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Top-level System Component. The top-level system component declares the fol-
lowing properties to state that the model is a synchronous design and to declare
the period of the system, respectively.

Hybrid_SynchAADL::Synchronous => true;
Period => period;

Environment Components. An environment component models real-valued state
variables that continuously change over time. State variables are specified using
data subcomponents of type Base_Types::Float. Each environment component
declares the property Hybrid_SynchAADL::isEnvironment => true.

An environment component can have different modes to specify different
continuous behaviors (trajectories). A controller command may change the mode
of the environment or the value of a variable. The continuous dynamics in each
mode is specified using either ODEs or continuous real functions as follows:

Hybrid_SynchAADL::ContinuousDynamics =>
"dynamics1" in modes (mode1), . . ., "dynamicsn" in modes (moden);

In HybridSynchAADL, a set of ODEs over n variables x1, . . . , xn, say,
dxi

dt = ei(x1, . . . , xn) for i = 1, . . . , n, is written as a semicolon-separated string:

d/dt(x1) = e1(x1, . . . , xn); . . . ; d/dt(xn) = en(x1, . . . , xn);

If a closed-form solution of ODEs is known, we can directly specify concrete
continuous functions, which are parameterized by a time parameter t and the
initial values x1(0), . . . , xn(0) of the variables x1, . . . , xn:

x1(t) = e1(t, x1(0), . . . , xn(0)); . . . ; xn(t) = en(t, x1(0), . . . , xn(0));

Sometimes an environment component may include real-valued parameters
or state variables that have the same constant values in each iteration, and can
only be changed by a controller command; their dynamics can be specified as
d/dt(x) = 0 or x(t) = x(0), and can be omitted in HybridSynchAADL.

An environment component interacts with discrete controllers by sending its
state values, and by receiving actuator commands that may update the values
of state variables or trigger mode (and hence trajectory) changes. This behavior
is specified in HybridSynchAADL using connections between ports and data
subcomponents. A connection from a data subcomponent inside the environment
to an output data port of an environment component declares that the value of
the data subcomponent is “sampled” by a controller through the output port of
the environment component. A connection from an environment’s input port to a
data subcomponent inside the environment declares that a controller command
arrived at the input port and updates the value of the data subcomponent.
When a discrete controller sends actuator commands, some input ports of the
environment component may receive no value (more precisely, some “don’t care”
value ⊥). In this case, the behavior of the environment is unchanged.
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Controller Components. Discrete controllers are usual AADL software compo-
nents in the Synchronous AADL subset [10,13]. A controller component is spec-
ified using the behavioral and structural subset of AADL: hierarchical system,
process, thread components, data subcomponents; ports and connections; and
thread behaviors defined by the Behavior Annex [29]. The hardware and schedul-
ing features of AADL, which are not relevant to synchronous designs, are not
considered in HybridSynchAADL

Dispatch. The execution of an AADL thread is specified by the dispatch protocol.
A thread with an event-triggered dispatch (such as aperiodic, sporadic, timed,
or hybrid dispatch protocols) is dispatched when it receives an event. Since
all “controller” components are executed in lock-step in HybridSynchAADL,
each thread must have periodic dispatch by which the thread is dispatched at
the beginning of each period. The periods of all the threads are identical to the
period declared in the top-level component. In AADL, this behavior is declared
by the thread component property:

Dispatch_Protocol => Periodic;

Timing Properties. A controller receives the state of the environment at some
sampling time, and sends a controller command to the environment at some
actuation time. Sampling and actuation take place according to the local clock
of the controller, which may differ from the “ideal clock” by up to the maximal
clock skew. These time values are declared by the component properties:

Hybrid_SynchAADL::Max_Clock_Deviation => time;
Hybrid_SynchAADL::Sampling_Time => lower bound .. upper bound;
Hybrid_SynchAADL::Response_Time => lower bound .. upper bound;

The upper sampling time bound must be strictly smaller than the upper bound
of actuation time, and the lower bound of actuation time must be strictly greater
than the lower bound of sampling time. Also, the upper bounds of both sampling
and actuating times must be strictly smaller than the maximal execution time
to meet the (Hybrid) PALS constraints [11].

Initial Values and Parameters. In AADL, data subcomponents represent data
values, such as Booleans, integers, and floating-point numbers. The initial values
of data subcomponents and output ports are specified using the property:

Data_Model::Initial_Value => ("value");

Sometimes initial values can be parameters, instead of concrete values. E.g., you
can check whether a certain property holds from initial values satisfying a certain
constraint for those parameters (see Section 4). In HybridSynchAADL, such
unknown parameters can be declared using the following AADL property:

Data_Model::Initial_Value => ("param");
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Communication. There are three kinds of ports: data ports, event ports, and
event data ports. In AADL, event and event data ports can trigger the execution
of threads, whereas data ports cannot. In HybridSynchAADL, connections
are constrained for synchronous behaviors: no connection is allowed between
environments, or between environments and the enclosing system components.

Connections Between Discrete Controllers. All (non-actuator) output values of
controller components generated in an iteration are available to the receiving
controller components at the beginning of the next iteration. Therefore, two
controller components can be connected only by data ports with delayed con-
nections, declared by the connection property:

Timing => Delayed;

Connections Between Controller and Environment. In HybridSynchAADL,
interactions between a controller and an environment occur instantaneously at
the sampling and actuating times of the controller.1 Because an environment
does not “actively” send data for sampling, every output port of an environment
must be a data port, whereas its input ports could be of any kind.

On the other hand, any types of input ports, such as data, event, event
data ports, are available for environment components. Specifically, a discrete
controller can trigger a mode transition of an environment through event ports.
Therefore, no extra requirement is needed for connections, besides the usual
constraints for port to port connections in AADL.

2.3 Property Specification Language

HybridSynchAADL’s property specification language allows the user to easily
specify invariant and reachability properties in an intuitive way, without having
to understand Maude or the formal representation of the models. Such properties
are given by propositional logic formulas whose atomic propositions are AADL
Boolean expressions. Because HybridSynchAADL models are infinite-state
systems, we only consider properties over behaviors up to a given time bound.

Atomic Propositions. Atomic propositions are given by AADL boolean expres-
sions in the AADL Behavior Annex syntax. Each identifier is fully qualified
with its component path in the AADL syntax. A scoped expression of the form
path | exp denotes that each component path of each identifier in the expres-
sion exp begins with path. A “named” atomic proposition can be declared using
AADL Boolean expressions with an identifier as follows:

proposition [id ]: AADL Boolean Expression

1 More precisely, processing times and delays between environments and controllers
are modeled using sampling and actuating times.
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Such user-defined propositions can appear in propositional logic formulas, with
the prefix ? for parsing purposes, for invariant and reachability properties.

We can simplify component paths that appear repeatedly in conditions using
component scopes. A scoped expression of the form

path | exp

denotes that the component path of each identifier in the expression exp begins
with path. For example, c1 . c2 | ((x1 > x2) and (b1 = b2)) is equivalent
to (c1 . c2 . x1 > c1 . c2 . x2) and (c1 . c2 . b1 = c1 . c2 . b2). These
scopes can be nested so that one scope may include another scope. For example,
c1 | ((c2 | (x > c3 . y)) = (c4 | (c5 | b))) is equivalent to the expression
(c1 . c2 . x > c1 . c2 . c3 . y) = c1 . c4 . c5 . b.

Invariant Properties. An invariant property is composed of an identifier name,
an initial condition ϕinit , an invariant condition ϕinv , and a time bound τbound ,
where ϕinit and ϕinv are in propositional logic. Intuitively, the invariant property
holds if for every (initial) state satisfying the initial condition ϕinit , all states
reachable within the time bound τbound satisfy the invariant condition ϕinv .

invariant [name]: ϕinit ==> ϕinv in time τbound

Reachability Properties. A reachability property (the dual of an invariant) holds
if a state satisfying ϕgoal is reachable from some state satisfying the initial con-
dition ϕinit within the time bound τbound . It is worth noting that a reachability
property can be written as an invariant property by negating the goal condition.

reachability [name]: ϕinit ==> ϕgoal in time τbound

3 HybridSynchAADL Tool’s Functionality

This section introduces the HybridSynchAADL tool supporting the modeling
and formal analysis of HybridSynchAADL models. The tool is an OSATE plu-
gin which: (i) provides the wizard which create a PSPC language file to specify
properties of models, the Maude preference page to set up Maude. (ii) synthe-
sizes a rewriting logic model from a HybridSynchAADL model, and performs
various formal analyses using Maude combined with SMT solving. (iii) shows
the results of the analyses.

3.1 Maude Preferences and PSPC Wizard

Maude Preferences. The tool uses Maude with SMT to execute Maude code
which is the formal representation of the models and properties. To use Maude,
open Windows ⇒ Preferences in the top menu. As illustrated in Figure 2, there
is the Maude Preferences category in the left side of the window. Set the location
of the Maude directory and the executable Maude file.
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Fig. 2. Interface of the Maude Prefernces page

Property Specification Wizard. The tool provides a simple way to create a
property specification (PSPC) language file. Open New ⇒ Others in the top
menu. In the New window, click HybridSynchAADL⇒ HybridSynchAADL Property
Specification Language. As illustrated in Figure 3, Select an existing instance.

Fig. 3. Interface of the property speicifcation wizard.

3.2 Tool Interface

Figure 4 shows the interface of our tool. The left editor shows the AADL code, the
bottom right editor shows its graphical representation, and the top right editor
shows two properties in the property specification language. The HybridSynch-
AADL menu contains three items for constraint checking, code generation, and
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formal analysis. The HybridSynchAADL Result view at the bottom displays
the analysis results in a readable format.

Fig. 4. Interface of the HybridSynchAADL tool.

Constraints Checking. By syntactically validating a HybridSynchAADL model,
we ensure that the model satisfies all the syntactic constraints of HybridSynch-
AADL, and thus the corresponding Maude model is executable. For example,
environment components (with Hybrid_SynchAADL::isEnvironment) can only
contain data subcomponents of type Base_Types::Float, and must declare the
continuous dynamics using Hybrid_SynchAADL::ContinuousDynamics. The tool
checks other “trivial” constraints that are assumed in the semantics of Hybrid-
SynchAADL; e.g., all input ports are connected to some output ports.

Code Generation. The HybridSynchAADL tool synthesizes corresponding
Maude code from the given model. During the process, when the error case
occurs such as declaring a bus component (which is a hardware component), the
tool shows an error message in the Problem view.

Formal Analysis. HybridSynchAADL provides two formal analysis methods.
Symbolic reachability analysis can verify that all possible behaviors—imposed by
sensing and actuation times based on imprecise clocks—satisfy a given require-
ment;if not, a counterexample is generated. Randomized simulation repeatedly
executes the model (using Maude) until a counterexample is found, by randomly
choosing concrete sampling and actuating times, initial values of the state vari-
ables, nondeterministic transitions, etc.

Our tool also provides portfolio analysis that combines symbolic reachability
analysis and randomized simulation. HybridSynchAADL runs both methods
in parallel using multithreading, and displays the result of the analysis that
terminates first. Symbolic reachability analysis can guarantee the absence of a
counterexample, whereas randomized simulation is effective for finding “obvious”
bugs. Portfolio analysis combines the advantages of both approaches.
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3.3 Analysis Configuration and Result View

HybridSynchAADL Analysis Configuration. As illustrated in Figure 5, when the
analysis method is selected in the HybridSynchAADL menu, the user can set
the corresponding parameters in the HybridSynchAADL Analysis configuration
in the Run Configurations window.

For the randomized simulation:

– Random seed: The initial random seed for the random operation.
– Default minimum bound of "param": The minimum bound of the parama-

terized component.
– Default maximum bound of "param": The maximum bound of the parame-

terized component.

For the symbolic reachability analysis:

– Loop bound: The maximal number of iterations in the loop statement speci-
fied in the behavior annex.

– Transition bound: The maximal number of transitions between states.

PropSpec File is for the path of the target PSPC file. Timeout is for the
timeout value. When ‘infinity’ is written in Timeout, the tool analyzes properties
until the results of the analysis come out.

Fig. 5. Interface of the HybridSynchAADL analysis configuration.

HybridSynchAADL Result View. The tool shows the results of the analysis in
the HybridSynchAADL Result view as illustrated in Figure 6. The meaning
of each column is as follows:
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– PSPC File: The target PSPC file name.
– Property Id: The analyzed property name.
– Result: The analysis result.
– Method: The used method to get the result.
– CPUTime: The elappsed CPU time.
– RunnignTime: The elappsed running time.
– Location: The location of the result file.

In Figure 6, the concrete results of the analysis for a counterexample or
witness are also shown in the editor as a sequence of states for synchronous
steps. For example, the drone dr3 has a velocity (−5126, 5682) at time 0 (i.e., in
the initial state). You can see a counterexample or witness by clicking the link
in the Location column.

Fig. 6. HybridSynchAADL Analysis Results
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4 Examples

We have developed a variety of HybridSynchAADL models for networked ther-
mostat controllers, and both rendezvous and formation control of drones with
respect to single-integrator and double-integrator dynamics. All these models
are available at https://hybridsynchaadl.github.io/benchmark.

4.1 Networked Thermostat

The HybridSynchAADL Model. There are two thermostats that con-
trol the temperatures of two rooms located in different places. The goal is to
maintain similar temperatures in both rooms. For this purpose, the controllers
communicate with each other over a network, and turn the heaters on or off,
based on the current temperature of the room and the temperature of the other
room. Figure 7 shows the architecture of this networked thermostat system. For
room i, for i = 1, 2, the controller ctrli controls its environment envi (using
“connections” explained below).

env1
setPower1

turnOn1

turnOff2

ctrl1getTemp1

send1

send2

env2ctrl2
setPower2

turnOn2

turnOff2

getTemp2

Fig. 7. A networked thermostat system.

Environment. Figure 9 gives an environment component RoomEnv for our net-
worked thermostat system. Figure 8 shows its architecture. It has data out-
put port temp, data input port power, and event input ports on_control and
off_control. The implementation of RoomEnv has two data subcomponents x
and p to denote the temperature of the room and the heater’s power, respec-
tively. They represent the state variables of RoomEnv with the specified values.

There are two modes heaterOn and heaterOff with their respective continu-
ous dynamics, specified by Hybrid_SynchAADL::ContinuousDynamics, using con-
tinuous functions over time parameter t, where heaterOff is the initial mode. Be-
cause p is a constant, p’s dynamics d/dt(p) = 0 is omitted. The value x changes
continuously according to the mode and the continuous dynamics.

The value of x is sent to the controller through the output port temp, declared
by the connection port x -> temp. When a discrete controller sends an actuation
command through input ports power, on_control, and off_control, the mode
changes according to the mode transitions, and the value of p can be updated
by the value of input port power, declared by the connection port x -> temp.

https://hybridsynchaadl.github.io/benchmark
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RoomEnv.impl

temppower

on_control

off_control

xp

heaterOn

heaterOff

x(t) = x(0) - 0.1 * (x(0) - p / 0.1) * t

x(t) = x(0) * (1 - 0.1 * t)

Fig. 8. An environment of the thermostat controller.

system RoomEnv
features

temp: out data port Base_Types::Float;
power: in data port Base_Types::Float;
on_control: in event port; off_control: in event port;

properties
Hybrid_SynchAADL::isEnvironment => true;

end RoomEnv;

system implementation RoomEnv.impl
subcomponents

x: data Base_Types::Float {Data_Model::Initial_Value => ("param");};
p: data Base_Types::Float {Data_Model::Initial_Value => ("5");};

connections
C: port x -> temp; R: port power -> p;

modes
heaterOff: initial mode; heaterOn: mode;
heaterOff -[on_control]-> heaterOn; heaterOn -[off_control]-> heaterOff;

properties
Hybrid_SynchAADL::ContinuousDynamics =>

"x(t) = x(0) - 0.1 * (x(0) - p / 0.1) * t;" in modes (heaterOn),
"x(t) = x(0) * (1 - 0.1 * t);" in modes (heaterOff);

end RoomEnv.impl;

Fig. 9. A RoomEnv component.

Controller. Consider again our networked thermostat system. Figure 12 shows
a controller system component. The system implementation Thermostat.impl
includes the process component thermProcess. As shown in Figure 11 the thread
component thermThread is declared as subcomponents in ThermProcess.impl
The input and ouput port of a wrapper component are connected to the ports
of the enclosed subcomponent.

Figure 10 shows a thread component ThermThread that turns the heater on
or off depending on the average value avg of the current temperatures of the
two rooms. It has event output ports on_control and off_control, data input
ports curr and tin, and data output ports set_power and tout. The ports
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on_control, off_control, set_power, and curr are eventually connected to an
environment, and tin and tout are connected to another controller component
(see Fig. 13). The implementation has the data subcomponent avg whose initial
value is declared as a parameter.

When the thread dispatches, the transition from state init to exec is taken,
which updates avg using the values of the input ports curr and tin, and assigns
to the output port tout the value of curr. Since exec is not a complete state,
the thread continues executing by taking one of the other transitions, which
may send an event. For example, if the value of avg is smaller than 10, a control
command that sets the heater’s power to 5 is sent through the port set_power,
and an event is sent through the port off_control. The resulting state init is
a complete state, and the execution of the current dispatch ends.

thread ThermThread
features

on_control: out event port;
off_control: out event port;
set_power: out data port Base_Types::Float;
curr: in data port Base_Types::Float;
tin: in data port Base_Types::Float;
tout: out data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;
Hybrid_SynchAADL::Sampling_Time => 1ms .. 5ms;
Hybrid_SynchAADL::Response_Time => 7ms .. 9ms;

end ThermThread;

thread implementation ThermThread.impl
subcomponents

avg : data Base_Types::Float {Data_Model::Initial_Value => ("param");};
annex behavior_specification{**

states
init : initial complete state; exec : state;

transitions
init -[on dispatch]-> exec {

avg := (tin + curr) / 2; tout := curr };
exec -[avg > 25]-> init {

off_control! };
exec -[avg < 20 and avg >= 10]-> init {

set_power := 5; on_control! };
exec -[avg < 10]-> init {

set_power := 10; on_control! }; **};
end ThermThread.impl;

Fig. 10. A simple thermostat thread.
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process ThermProcess
features

on_control: out event port;
off_control: out event port;
set_power: out data port Base_Types::Float;
curr: in data port Base_Types::Float;
tin: in data port Base_Types::Float;
tout: out data port Base_Types::Float;

end ThermProcess;
process implementation ThermProcess.impl

subcomponents
thermThread : thread ThermThread.impl;

connections
C1: port thermThread.on_control -> on_control;
C2: port thermThread.off_control -> off_control;
C3: port thermThread.set_power -> set_power;
C4: port thermThread.tout -> tout;
C5: port curr -> thermThread.curr;
C6: port tin -> thermThread.tin;

end ThermProcess.impl;

Fig. 11. A simple thermostat process.

system Thermostat
features

on_control: out event port; off_control: out event port;
set_power: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
curr: in data port Base_Types::Float;
tin: in data port Base_Types::Float;
tout: out data port Base_Types::Float

{Data_Model::Initial_Value => ("0");};
end Thermostat;
system implementation Thermostat.impl

subcomponents
thermProcess : process ThermProcess.impl;

connections
C1: port thermProcess.on_control -> on_control;
C2: port thermProcess.off_control -> off_control;
C3: port thermProcess.set_power -> set_power;
C4: port thermProcess.tout -> tout;
C5: port curr -> thermProcess.curr;
C6: port tin -> thermProcess.tin;

end Thermostat.impl;

Fig. 12. A simple thermostat controller.
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Top-Level Component. Figure 13 shows an implementation of a top-level system
component TwoThermostats of our networked thermostat system, depicted in
Figure 7. This component has no ports and contains two thermostats and their
environments. The controller components ctrl1 and ctrl2 are implemented us-
ing the system component Thermostat.impl in Figure 10, and the environment
components env1 and env2 are given using RoomEnv.impl in Figure 9. Each dis-
crete controller ctrli, for i = 1, 2, is connected to its environment component
envi using four connections turnOni, turnOffi, setPoweri, and getTempi. The
controllers ctrl1 and ctrl2 are connected with each other using delayed data
connections send1 and send2.

system TwoThermostats
properties

Hybrid_SynchAADL::Synchronous => true;
end TwoThermostats;

system implementation TwoThermostats.impl
subcomponents

ctrl1: system Thermostat.impl; ctrl2: system Thermostat.impl;
env1: system RoomEnv.impl; env2: system RoomEnv.impl;

connections
turnOn1: port ctrl1.on_control -> env1.on_control;
turnOff1: port ctrl1.off_control -> env1.off_control;
setPower1: port ctrl1.set_power -> env1.power;
getTemp1: port env1.temp -> ctrl1.curr;
send1: port ctrl1.tout > ctrl2.tin;
turnOn2: port ctrl2.on_control -> env2.on_control;
turnOff2: port ctrl2.off_control -> env2.off_control;
setPower2: port ctrl2.set_power -> env2.power;
getTemp2: port env2.temp -> ctrl2.curr;
send2: port ctrl2.tout -> ctrl1.tin;

properties
Period => 10 ms;
Hybrid_SynchAADL::Max_Clock_Deviation => 1 ms;
Timing => Delayed applies to send1, send2;

end TwoThermostats.impl;

Fig. 13. A top level component with two thermostat controllers.

Property Specifications. Consider the thermostat system that consists of two
thermostat controllers ctrl1 and ctrl2 and their environments env1 and env2,
respectively. The following declares two propositions inRan1 and inRan2 using
the property specification language. For example, inRan1 holds if the value of
env1’s data subcomponent x is between 10 and 25.
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proposition [inRan1 ]: env1 | (x > 10 and x <= 25)
proposition [inRan2 ]: env2 | (x > 5 and x <= 10)

The following declares the invariant property inv. The initial condition states
that the value of env1’s data subcomponent x satisfies |x−15| < 3 and the value
of env2’s data subcomponent x satisfies |x − 7| < 1. This property holds if for
each initial state satisfying the initial condition, any reachable state within the
time bound 30 satisfies the conditions inRan1, inRan2, and env1.x > env2.x.

invariant [inv]: abs(env1.x - 15) < 3 and abs(env2.x - 7) < 1
==> ?inRan1 and ?inRan2 and (env1.x > env2.x) in time 30

As shown in Figure 14, there is a counterexample to inv up to bound 30.
It takes 400ms in the CPU time and 1055ms in the running time to find a
counterexample. The result is obtained by the symbolic analysis. Note that the
result can also be obatined by the randomized simulation.

Fig. 14. The analysis results of thermostat system.

4.2 Rendezvous Drones with Single-Integrator

The HybridSynchAADL Model. There are four distributed drones with
rendezvous controller for single-integrator dynamics. Figure 15 illustrates the
AADL architecture of the model. There are four drone components. Each drone
is connected with two other drones to exchange positions. For example, Drone 1
sends its position to Drone 2, and receives the position of Drone 4. A drone com-
ponent consists of an environment and its controller. An environment component
specifies the physical model of the drone, including position and velocity. A con-
troller component interacts with the environment according to the sampling and
actuating times. All controllers in the model have the same period.

FourDrones Hybrid_SynchAADL::Synchronous => true
Hybrid_SynchAADL::Max_Clock_Deviation => 10ms
Period => 100ms

Drone1 Drone2 Drone3 Drone4

Drone
Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms 
Hybrid_SynchAADL::Response_Time => 6ms .. 9ms

Environment Controller
~x

<latexit sha1_base64="1BXJDaX2rm10Ymz/ZPwn4wBW4M0=">AAACNXicbZDNSsNAFIUn9a/Wv1Y3gptgEVxISaSiy6IblxXsD7ShTCbTdugkE2ZuSkPoQ7jVB/FZXLgTt76CkzQLbXtg4HC+e+HOcUPOFFjWh1HY2Nza3inulvb2Dw6PypXjthKRJLRFBBey62JFOQtoCxhw2g0lxb7LacedPKS8M6VSMRE8QxxSx8ejgA0ZwaCjTn9KSTKbD8pVq2ZlMleNnZsqytUcVIzTvidI5NMACMdK9WwrBCfBEhjhdF7qR4qGmEzwiPa0DbBP1ZU3ZaHKrJPMstvn5oWmnjkUUr8AzCz9u51gX6nYd/Wkj2GsllkarmUKfCxj6a2FaQJCcLWO9iIY3jkJC8IIaEAWNw4jboIw0w5Nj0lKgMfaYCKZ/rJJxlhiArpp3aW93NyqaV/X7Hrt5qlebdznrRbRGTpHl8hGt6iBHlETtRBBE/SCXtGb8W58Gl/G92K0YOQ7J+ifjJ9falSsVA==</latexit>
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out

in

Fig. 15. The AADL architecture of four drones (left), and a drone component (right).
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In each round, a controller determines a new velocity to synchronize its move-
ment with the other drones. The controller obtains the position ~x from its en-
vironment according to the sampling time. The position of the connected drone
is sent in the previous round, and is already available to the controller at the
beginning of the round. The controller sends the current position ~x through its
output port. In the meantime, the environment changes its position according
to the velocity indicated by its controller, where the new velocity ~v from the
controller becomes effective according to the actuation time.

Top-Level Component. The top-level component includes four Drone components
(Figure 16). Each drone sends its position through its output ports oX and oY,
and receives the position of the other drone through its input ports iX and
iY. The component is declared to be synchronous with period 100 ms. Also, to
meet the constraints of HybridSynchAADL, the connections between drone
components are delayed and the output ports have some initial values. The
maximal clock skew is given by Hybrid_SynchAADL::Max_Clock_Deviation.

system FourDronesSystem
end FourDronesSystem;

system implementation FourDronesSystem.impl
subcomponents

dr1: system Drone::Drone.impl; dr2: system Drone::Drone.impl;
dr3: system Drone::Drone.impl; dr4: system Drone::Drone.impl;

connections
C1: port dr1.oX -> dr2.iX; C2: port dr1.oY -> dr2.iY;
C3: port dr2.oX -> dr3.iX; C4: port dr2.oY -> dr3.iY;
C5: port dr3.oX -> dr4.iX; C6: port dr3.oY -> dr4.iY;
C7: port dr4.oX -> dr1.iX; C8: port dr4.oY -> dr1.iY;

properties
Hybrid_SynchAADL::Synchronous => true;
Period => 100ms;
Hybrid_SynchAADL::Max_Clock_Deviation => 10ms;
Timing => Delayed applies to C1, C2, C3, C4, C5, C6, C7, C8;
Data_Model::Initial_Value => ("0.0") applies to

dr1.oX, dr2.oX, dr3.oX, dr4.oX,
dr1.oY, dr2.oY, dr3.oY, dr4.oY;

end FourDronesSystem.impl;

Fig. 16. The top-level system component FourDronesSystem.

Drone Component. A drone component in Figure 17 has input ports iX and iY
and output ports oX and oY. Its implementation Drone.impl contains a controller
ctrl and an environment env. The controller ctrl obtains the current position
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from env via input ports cX and cY, and sends a new velocity to env via output
ports vX and vY, according to its sampling and actuating times.

system Drone
features

iX: in data port Base_Types::Float; oX: out data port Base_Types::Float;
iY: in data port Base_Types::Float; oY: out data port Base_Types::Float;

end Drone;

system implementation Drone.impl
subcomponents

ctrl: system DroneControl::DroneControl.impl;
env: system Environment::Environment.impl;

connections
C1: port ctrl.oX -> oX; C2: port ctrl.oY -> oY;
C3: port iX -> ctrl.iX; C4: port iY -> ctrl.iY;
C5: port env.cX -> ctrl.cX; C6: port env.cY -> ctrl.cY;
C7: port ctrl.vX -> env.vX; C8: port ctrl.vY -> env.vY;

properties
Hybrid_SynchAADL::Sampling_Time => 2ms .. 4ms;
Hybrid_SynchAADL::Response_Time => 6ms .. 9ms;

end Drone.impl;

Fig. 17. A drone component in HybridSynchAADL.

Environment. Figure 18 shows an Environment component that specifies the
physical model of the drone. It has two input ports vX and vY and two output
ports cX and cY. Data subcomponents x, y, velx and vely represent the position
and velocity of the drone. The values of x and y are sent to the controller through
the output ports cX and cY. When a controller sends an actuation command to
ports vX and vY, the values of velx and vely are updated by the values of vX
and vY, or the mode changes according to the mode transitions. The dynamics
of (x, y) is given as continuous functions x(t) = velxt+ x(0) and y(t) = velyt+
y(0) over time t in Hybrid_SynchAADL::ContinuousDynamics, which are actually
equivalent to the ordinary differential equations ẋ = velx and ẏ = vely.

Controller. Figure 19 shows a controller system component. As explained above,
there are four ports iX, iY, oX, and oY for communicating with other con-
trollers, and four ports cX, cY, vX, and vY for interacting with the environment.
The system implementation DroneControl.impl includes the process component
ctrlProc. As shown in Figure 20, ctrlProc again includes the thread component
cThread in its implementation DroneControlProc.impl. The input and output
ports of a wrapper component (e.g., ctrlProc) are connected to the ports of the
enclosed subcomponent (e.g., cThread).
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system Environment
features

cX: out data port Base_Types::Float;
cY: out data port Base_Types::Float;
vX: in data port Base_Types::Float;
vY: in data port Base_Types::Float;

properties
Hybrid_SynchAADL::isEnvironment => true;

end Environment;

system implementation Environment.impl
subcomponents

x: data Base_Types::Float; y: data Base_Types::Float;
velx: data Base_Types::Float; vely: data Base_Types::Float;

connections
C1: port x -> cX; C2: port y -> cY;
C3: port vX -> velx; C4: port vY -> vely;

properties
Hybrid_SynchAADL::ContinuousDynamics =>

"x(t) = velx * t + x(0); y(t) = vely * t + y(0);";
Data_Model::Initial_Value => ("param") applies to x, y, velx, vely;

end Environment.impl;

Fig. 18. An environment component in HybridSynchAADL.

Figure 21 shows a thread component for a drone controller. When the thread
dispatches, the transition from init to exec is taken. When the distance between
the current position and the connected drone is too close, the new velocity is
set to (0, 0) and the close flag is set to true to avoid a collision. Otherwise,
the new velocity is set toward the connected drone according to a discretized
version of the distributed consensus algorithm. That is, the new velocity (vX,
vY) is chosen from a predefined set of velocities, according to the value (nx, ny)
obtained by the distributed consensus algorithm and the close flag. Finally, the
current position is assigned to the output ports oX and oY.

Property Specifications. Consider two properties of the drone rendezvous
model: (i) drones do not collide (safety), and (ii) all drones could eventually
gather together (rendezvous). Because the drone model is a distributed hybrid
system, these properties depend on the continuous behavior perturbed by sensing
and actuating times. We analyze them up to bound 500 ms.

invariant [safety]: ?initial and ?velconst ==> not ?collision in time 500;
reachability [rendezvous]: ?initial and ?velconst ==> ?gather in time 500;

We define four atomic propositions collision, gather, initial, and velconst
for four drones dr1, dr2, dr3, and dr4. Two drones collide if the distance between
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system DroneControl
features

iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
cX: in data port Base_Types::Float;
cY: in data port Base_Types::Float;
vX: out data port Base_Types::Float;
vY: out data port Base_Types::Float;

end DroneControl;

system implementation DroneControl.impl
subcomponents

ctrlProc: process DroneControlProc.impl;
connections

C1: port ctrlProc.oX -> oX; C2: port ctrlProc.oY -> oY;
C3: port iX -> ctrlProc.iX; C4: port iY -> ctrlProc.iY;
C5: port cX -> ctrlProc.cX; C6: port cY -> ctrlProc.cY;
C7: port ctrlProc.vX -> vX; C8: port ctrlProc.vY -> vY;

end DroneControl.impl;

Fig. 19. A controller system component.

process DroneControlProc
features

iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
cX: in data port Base_Types::Float;
cY: in data port Base_Types::Float;
vX: out data port Base_Types::Float;
vY: out data port Base_Types::Float;

end DroneControlProc;

process implementation DroneControlProc.impl
subcomponents

cThread: process DroneControlThread.impl;
connections

C1: port cThread.oX -> oX; C2: port cThread.oY -> oY;
C3: port iX -> cThread.iX; C4: port iY -> cThread.iY;
C5: port cX -> cThread.cX; C6: port cY -> cThread.cY;
C7: port cThread.vX -> vX; C8: port cThread.velY -> vY;

end DroneControlProc.impl;

Fig. 20. A controller process component
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thread DroneControlThread
features

iX: in data port Base_Types::Float;
iY: in data port Base_Types::Float;
oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
cX: in data port Base_Types::Float;
cY: in data port Base_Types::Float;
vX: out data port Base_Types::Float;
vY: out data port Base_Types::Float;

properties
Dispatch_Protocol => Periodic;

end DroneControlThread;

thread implementation DroneControlThread.impl
subcomponents

close: data Base_Types::Boolean
{Data_Model::Initial_Value => ("false");};

annex behavior_specification {**
variables

nx, ny : Base_Types::Float;
states

init: initial complete state; exec, output: state;
transitions

init -[on dispatch]-> exec;
exec -[abs(cX - iX) < 0.5 and abs(cY - iY) < 0.5]-> output {

vX := 0; vY := 0; close := true
};
exec -[otherwise]-> output {

nx := -#DroneSpec::A * (cX - iX);
ny := -#DroneSpec::A * (cY - iY);
if (nx > 0.3) vX := 2.5
elsif (nx > 0.15)

if (close) vX := 1.5
else vX := 0.0
end if

else vX := -2.5
end if;
if (ny > 0.3) vY := 2.5
elsif (ny > 0.15)

if (close) vY := 1.5
else vY := 0.0
end if

else vY := -2.5
end if;
close := false };

output -[ ]-> init { oX := cX; oY := cY };
**};

end DroneControlThread.impl;

Fig. 21. A controller thread in HybridSynchAADL
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them is less than 0.1. All drones have gathered if the distance between each pair
of drones is less than 1. The initial values of x, y, velx and vely are declared
to be parametric in Figure 18 and constrained by the propositions initial and
velconst. There are infinitely many states satisfying the initial condition.

proposition [collision]:
(abs(dr1.env.x - dr2.env.x) < 0.1 and abs(dr1.env.y - dr2.env.y) < 0.1) or
(abs(dr1.env.x - dr3.env.x) < 0.1 and abs(dr1.env.y - dr3.env.y) < 0.1) or
(abs(dr1.env.x - dr4.env.x) < 0.1 and abs(dr1.env.y - dr4.env.y) < 0.1) or
(abs(dr2.env.x - dr3.env.x) < 0.1 and abs(dr2.env.y - dr3.env.y) < 0.1) or
(abs(dr2.env.x - dr4.env.x) < 0.1 and abs(dr2.env.y - dr4.env.y) < 0.1) or
(abs(dr3.env.x - dr4.env.x) < 0.1 and abs(dr3.env.y - dr4.env.y) < 0.1);

proposition [gather]:
abs(dr1.env.x - dr2.env.x) < 1 and abs(dr1.env.y - dr2.env.y) < 1 and
abs(dr1.env.x - dr3.env.x) < 1 and abs(dr1.env.y - dr3.env.y) < 1 and
abs(dr1.env.x - dr4.env.x) < 1 and abs(dr1.env.y - dr4.env.y) < 1 and
abs(dr2.env.x - dr3.env.x) < 1 and abs(dr2.env.y - dr3.env.y) < 1 and
abs(dr2.env.x - dr4.env.x) < 1 and abs(dr2.env.y - dr4.env.y) < 1 and
abs(dr3.env.x - dr4.env.x) < 1 and abs(dr3.env.y - dr4.env.y) < 1;

proposition [initial]:
abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < 0.01 and
abs(dr2.env.x + 1.5) < 0.01 and abs(dr2.env.y + 1.1) < 0.01 and
abs(dr3.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < 0.01 and
abs(dr4.env.x + 1.1) < 0.01 and abs(dr4.env.y + 1.5) < 0.01;

proposition [velconst]:
abs(dr1.env.velx) <= 0.01 and abs(dr1.env.vely) <= 0.01 and
abs(dr2.env.velx) <= 0.01 and abs(dr2.env.vely) <= 0.01 and
abs(dr3.env.velx) <= 0.01 and abs(dr3.env.vely) <= 0.01 and
abs(dr4.env.velx) <= 0.01 and abs(dr4.env.vely) <= 0.01;

As shown in Figure 22, there is no counterexample to safety up to bound
500. The result is obtained by the symbolic analysis for safety, and by the
randomized simulation for rendezvous.

Fig. 22. The analysis results of drone rendezvous models
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4.3 Formation Drones with Double-Integrator

The HybridSynchAADL Model. There are four distributed drones with
a formation controller for double-integrator dynamics. Compared to the ren-
dezvous drones in Section 4.2, each drone sends its position and velocity to the
connected drone. In each round, a controller determines a new acceleration. The
controller obtains the position and velocity from its environment. The environ-
ment changes its position and velocity according to the acceleration indicated
by its controller.

In the case of formation drones, all drones follow a reference drone which
changes its acceleration in a predefined set of accelerations in each round. All
drones try to keep formation based on the position of the reference drone and
offset values.

Top-Level Component. The top-level component includes four Drone components
and one RefDrone component as illustrated in Figure 23. Each drone sends its
position and velocity through its output ports oX, oY, oVX, and oVY, and receives
the position and velocity of the other drone through its input ports iX, iY, iVX,
and iVY. Each drone also receives the position and velocity of the reference drone
through its input ports rX, rY, rVX, and rVY. To keep the formation, each drone
has initialized offset values offsetX and offsetY in its thread component.

Drone Component. A drone component in Figure 24 has input ports iX, iY,
iVX, iVY, rX and rY and output ports oX, oY, oVX, and oVY. The controller ctrl
obtains the current position and velocity from env via input ports cX, cY, cVX
and cVY, and sends a new acceleration to env via output ports aX and aY. The
controller ctrl obtains the reference drone’s position and velocity through its
input ports rX, rY, rVX, and rVY to calculate a proper acceleration.

Environment. Figure 25 shows an Environment component. It has two input
ports aX and aY and output ports cX, cY, cVX, and cVY. Data subcomponents x,
y, velx, vely, accx, and accy represent the position, velocity and acceleration
of the drone. The dynamics of (x, y) is given as continuous functions x(t) =
x(0) + velxt + 1/2 accxt

2 and y(t) = y(0) + velyt + 1/2 accyt
2 over time t in

Hybrid_SynchAADL::ContinuousDynamics. The dynamics of (velx, vely) is also
given as velx(t) = velx(0) + accxt and vely(t) = vely(0) + accyt.

Drone Controller. Figure 26 shows a thread component for a drone controller.
When the distance between the current position and the connected drone is too
close, the new acceleration is set to negation of the current velocity. Otherwise,
the new acceleration is set toward the connected drone according to a discretized
version of the distributed consensus algorithm. At the output state, the thread
component saves the current velocity of the reference drone.

Reference Drone Controller. Figure 27 shows a thread component for a reference
drone. It saves its states using data subcomponents nx and ny which represents
the current acceleration of the reference drone. Eventually, the acceleration of
the reference drone is changed into one of {0, 1, 2} in each period.
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system FourDronesSystem
end FourDronesSystem;

system implementation FourDronesSystem.impl
subcomponents

dr1: system Drone::Drone.impl; dr3: system Drone::Drone.impl;
dr2: system Drone::Drone.impl; dr4: system Drone::Drone.impl;
refDr: system RefDrone::RefDrone.impl;

connections
d1x: port dr1.oX -> dr2.iX; d1y: port dr1.oY -> dr2.iY;
d2x: port dr2.oX -> dr3.iX; d2y: port dr2.oY -> dr3.iY;
d3x: port dr3.oX -> dr4.iX; d3y: port dr3.oY -> dr4.iY;
d4x: port dr4.oX -> dr1.iX; d4y: port dr4.oY -> dr1.iY;
d1vx: port dr1.oVX -> dr2.iVX; d1vy: port dr1.oVY -> dr2.iVY;
d2vx: port dr2.oVX -> dr3.iVX; d2vy: port dr2.oVY -> dr3.iVY;
d3vx: port dr3.oVX -> dr4.iVX; d3vy: port dr3.oVY -> dr4.iVY;
d4vx: port dr4.oVX -> dr1.iVX; d4vy: port dr4.oVY -> dr1.iVY;
r1x: port refDr.oX -> dr1.rX; r1y: port refDr.oY -> dr1.rY;
r2x: port refDr.oX -> dr2.rX; r2y: port refDr.oY -> dr2.rY;
r3x: port refDr.oX -> dr3.rX; r3y: port refDr.oY -> dr3.rY;
r4x: port refDr.oX -> dr4.rX; r4y: port refDr.oY -> dr4.rY;
r1vx: port refDr.oVX -> dr1.rVX; r1vy: port refDr.oVY -> dr1.rVY;
r2vx: port refDr.oVX -> dr2.rVX; r2vy: port refDr.oVY -> dr2.rVY;
r3vx: port refDr.oVX -> dr3.rVX; r3vy: port refDr.oVY -> dr3.rVY;
r4vx: port refDr.oVX -> dr4.rVX; r4vy: port refDr.oVY -> dr4.rVY;

properties
Data_Model::Initial_Value => ("-0.5") applies to

dr1.drone.droneProc.droneThread.offsetX,
dr1.drone.droneProc.droneThread.offsetY,
dr2.drone.droneProc.droneThread.offsetY;

Data_Model::Initial_Value => ("0") applies to
dr2.drone.droneProc.droneThread.offsetX,
dr4.drone.droneProc.droneThread.offsetX,
dr4.drone.droneProc.droneThread.offsetY;

Data_Model::Initial_Value => ("0.5") applies to
dr3.drone.droneProc.droneThread.offsetX,
dr3.drone.droneProc.droneThread.offsetY;

Hybrid_SynchAADL::Max_Clock_Deviation => 5ms;
Hybrid_SynchAADL::Synchronous => true;
Period => 100ms;
Timing => Delayed applies to

d1x, d2x, d3x, d4x, d1vx, d2vx, d3vx, d4vx,
r1x, r2x, r3x, r4x, r1vx, r2vx, r3vx, r4vx,
d1y, d2y, d3y, d4y, d1vy, d2vy, d3vy, d4vy,
r1y, r2y, r3y, r4y, r1vy, r2vy, r3vy, r4vy;

end FourDronesSystem.impl;

Fig. 23. The top-level system component FourDronesSystem.
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system Drone
features
iX: in data port Base_Types::Float; iY: in data port Base_Types::Float;
iVX:in data port Base_Types::Float; iVY: in data port Base_Types::Float;
rX: in data port Base_Types::Float; rY: in data port Base_Types::Float;
rVX:in data port Base_Types::Float; rVY: in data port Base_Types::Float;
oX: out data port Base_Types::Float {Data_Model::Initial_Value => ("0");};
oVX:out data port Base_Types::Float {Data_Model::Initial_Value => ("0");};
oY: out data port Base_Types::Float {Data_Model::Initial_Value => ("0");};
oVY:out data port Base_Types::Float {Data_Model::Initial_Value => ("0");};

end Drone;

system implementation Drone.impl
subcomponents

ctrl: system DroneControl::DroneControl.impl;
env: system Environment::Environment.impl;

connections
C1: port ctrl.oX -> oX; C10: port ctrl.oY -> oY;
C2: port ctrl.oVX -> oVX; C11: port ctrl.oVY -> oVY;
C3: port iX -> ctrl.iX; C12: port iY -> ctrl.iY;
C4: port iVX -> ctrl.iVX; C13: port iVY -> ctrl.iVY;
C5: port ctrl.aX -> env.accX; C14: port ctrl.aY -> env.accY;
C6: port env.cX -> ctrl.cX; C15: port env.cY -> ctrl.cY;
C7: port env.cVX -> ctrl.cVX; C16: port env.cVY -> ctrl.cVY;
C8: port rX -> ctrl.rX; C17: port rY -> ctrl.rY;
C9: port rVX -> ctrl.rVX; C18: port rVY -> ctrl.rVY;

properties
Hybrid_SynchAADL::Sampling_Time => 3 ms .. 5 ms;
Hybrid_SynchAADL::Response_Time => 20 ms .. 30 ms;

end Drone.impl;

Fig. 24. A drone component in HybridSynchAADL.
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system Environment
features

cX: out data port Base_Types::Float; cY: out data port Base_Types::Float;
cVX: out data port Base_Types::Float; cVY: out data port Base_Types::Float;
aX: in data port Base_Types::Float; aY: in data port Base_Types::Float;

properties
Hybrid_SynchAADL::isEnvironment => true;

end Environment;

system implementation Environment.impl
subcomponents

x : data Base_Types::Float {Data_Model::Initial_Value => ("param");};
y : data Base_Types::Float {Data_Model::Initial_Value => ("param");};
velx : data Base_Types::Float {Data_Model::Initial_Value => ("0");};
vely : data Base_Types::Float {Data_Model::Initial_Value => ("0");};
accx : data Base_Types::Float {Data_Model::Initial_Value => ("0");};
accy : data Base_Types::Float {Data_Model::Initial_Value => ("0");};

connections
C1: port velx -> cVX; C4: port vely -> cVY;
C2: port x -> cX; C5: port y -> cY;
C3: port aX -> accx; C6: port aY -> accy;

properties
Hybrid_SynchAADL::ContinuousDynamics =>
"velx(t) = ((0.001) * accx * t) + velx(0);
x(t) = (x(0) + (0.001 * velx(0) * t) + ((0.000001) * accx * t * t) / 2);
vely(t) = ((0.001) * accy * t) + vely(0);
y(t) = (y(0) + (0.001 * vely(0) * t) + ((0.000001) * accy * t * t) / 2);";

end Environment.impl;

Fig. 25. An environment component in HybridSynchAADL.
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thread DroneControlThread
features
cX: in data port Base_Types::Float; cY: in data port Base_Types::Float;
cVX:in data port Base_Types::Float; cVY: in data port Base_Types::Float;
iX: in data port Base_Types::Float; iY: in data port Base_Types::Float;
iVX:in data port Base_Types::Float; iVY: in data port Base_Types::Float;
oX :out data port Base_Types::Float; oY : out data port Base_Types::Float;
oVX:out data port Base_Types::Float; oVY: out data port Base_Types::Float;
aX: out data port Base_Types::Float; aY: out data port Base_Types::Float;
rX: in data port Base_Types::Float; rY: in data port Base_Types::Float;
rVX:in data port Base_Types::Float; rVY: in data port Base_Types::Float;
properties Dispatch_Protocol => Periodic;

end DroneControlThread;
thread implementation DroneControlThread.impl

subcomponents
offsetX: data Base_Types::Float;
offsetY: data Base_Types::Float;
rVX0: data Base_Types::Float {Data_Model::Initial_Value => ("0");};
rVY0: data Base_Types::Float {Data_Model::Initial_Value => ("0");};

annex behavior_specification {**
variables

nx, ny, raX, raY : Base_Types::Float;
states

init : initial complete state;
exec, output : state;

transitions
init -[on dispatch]-> exec;
exec -[abs(cX - iX) < 0.3 and abs(cY - iY) < 0.3]-> output{

aX := -cVX; aY := -cVY };
exec -[otherwise]-> output {

raX := (rVX - rVX0);
nx := raX - #DroneSpec::alpha *
(cX - offsetX - rX + #DroneSpec::gamma * (cVX - rVX)) -

- #DroneSpec::A * (cX - offsetX - iX + #DroneSpec::gamma * (cVX - iVX));
raY := (rVY - rVY0);
ny := raY - #DroneSpec::alpha *
(cY- offsetY - rY + #DroneSpec::gamma * (cVY - rVY))

- #DroneSpec::A * (cY - offsetY - iY + #DroneSpec::gamma * (cVY - iVY));
if (nx > 0.5) aX := 40
elsif (nx > 0) aX := 0
else aX := -40 end if;
if (ny > 0.5) aY := 40
elsif (ny > 0) aY := 0
else aY := -40 end if };

output -[ ]-> init {
oX := cX - offsetX; oY := cY - offsetY;
oVX := cVX; oVY := cVY;
rVX0 := rVX; rVY0 := rVY };

**};
end DroneControlThread.impl;

Fig. 26. A controller thread in HybridSynchAADL
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thread RefDroneThread
features
aX: out data port Base_Types::Float; aY: out data port Base_Types::Float;
oX: out data port Base_Types::Float; oY: out data port Base_Types::Float;
oVX: out data port Base_Types::Float; oVY: out data port Base_Types::Float;
cX: in data port Base_Types::Float; cY: in data port Base_Types::Float;
cVX: in data port Base_Types::Float; cVY: in data port Base_Types::Float;
properties

Dispatch_Protocol => Periodic;
end RefDroneThread;
thread implementation RefDroneThread.impl

subcomponents
nx : data Base_Types::Float {Data_Model::Initial_Value => ("0");};
ny : data Base_Types::Float {Data_Model::Initial_Value => ("0");};

annex behavior_specification {**
states

init : initial complete state;
exec, output : state;

transitions
init -[ on dispatch ]-> exec;
exec -[ nx = 0 and ny = 0]-> output {

nx := 1; ny := 1 };
exec -[ nx = 1 and ny = 1]-> output {

nx := 2; ny := 2 };
exec -[ nx = 2 and ny = 2]-> output {

nx := 0; ny := 0 };
output -[ ]-> init {

aX := nx; aY := ny;
oX := cX; oY := cY;
oVX := cVX; oVY := cVY

};
**};

end RefDroneThread.impl;

Fig. 27. A reference drone controller in HybridSynchAADL
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Property Specifications. In the formation drone model, consider only one
property: "drones do not collide". We analyze them up to bound 500 ms. Com-
pared to the drone rendezvous model, we add the initial constraints of the refer-
ence drone in initial. Similar to the drone rendezvous model, there are many
initial states satisfying the proposition initial.

invariant [safety]: ?initial ==> not ?collision in time 500;

proposition [collision]:
(abs(dr1.env.x - dr2.env.x) < 0.1 and abs(dr1.env.y - dr2.env.y) < 0.1) or
(abs(dr1.env.x - dr3.env.x) < 0.1 and abs(dr1.env.y - dr3.env.y) < 0.1) or
(abs(dr1.env.x - dr4.env.x) < 0.1 and abs(dr1.env.y - dr4.env.y) < 0.1) or
(abs(dr2.env.x - dr3.env.x) < 0.1 and abs(dr2.env.y - dr3.env.y) < 0.1) or
(abs(dr2.env.x - dr4.env.x) < 0.1 and abs(dr2.env.y - dr4.env.y) < 0.1) or
(abs(dr3.env.x - dr4.env.x) < 0.1 and abs(dr3.env.y - dr4.env.y) < 0.1);

proposition [initial]:
abs(dr1.env.x - 1.1) < 0.01 and abs(dr1.env.y - 1.5) < 0.01 and
abs(dr2.env.x + 1.5) < 0.01 and abs(dr2.env.y + 1.1) < 0.01 and
abs(dr3.env.x - 1.5) < 0.01 and abs(dr3.env.y - 1.1) < 0.01 and
abs(dr4.env.x + 1.1) < 0.01 and abs(dr4.env.y + 1.5) < 0.01 and
abs(refDr.env.x - 0.0) < 0.01 and abs(refDr.env.y - 0.0) < 0.01;

As shown in Figure 28, there is a counterexample to safety. The result is
obtained by the randomized simulation method. The elapssed CPU time and
running time to get the result are 216ms and 782ms respectively.

Fig. 28. The analysis results of drone formation models
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