
An Extension of HybridSynchAADL and Its
Application to Collaborating Autonomous UAVs

Jaehun Lee1, Kyungmin Bae1, and Peter Csaba Ölveczky2

1 Pohang University of Science and Technology, Korea
2 University of Oslo, Norway

Abstract. Many collective adaptive systems consist of distributed nodes
that communicate with each other and with their physical environments,
but that logically should operate in a synchronous way. HybridSynch-
AADL is a recent modeling language and formal analysis tool for such
virtually synchronous cyber-physical systems (CPSs). HybridSynch-
AADL leverages the Hybrid PALS equivalence to reduce the hard prob-
lem of designing and verifying virtually synchronous CPSs—with asyn-
chronous communication, network delays, imprecise local clocks, contin-
uous dynamics, etc.—to the much easier tasks of designing and verifying
their underlying synchronous designs. The HybridSynchAADL model-
ing language is an annotated subset of the industrial modeling standard
AADL, and Maude-with-SMT-based formal analysis of HybridSynch-
AADL models has been integrated into the OSATE tool environment for
AADL. Up to now HybridSynchAADL has lacked important program-
ming language features such as compound data types and user-defined
functions. This makes it difficult to model advanced control logics of
collective adaptive systems. In this paper, we extend the HybridSynch-
AADL language, its formal semantics, and its analysis tool to support
array and record data types and user-defined functions. We apply our
extension of HybridSynchAADL to design and analyze a collection of
collaborating autonomous drones that adapt to their environments.

1 Introduction

Many distributed cyber-physical systems (CPSs)—including avionics [4,29] and
automotive systems [26, 33], networked medical devices [3, 21], and collaborat-
ing drones [25]—are virtually synchronous: They should logically behave as if
they were synchronous—in each iteration of the system, all components, in lock-
step, read inputs and perform transitions which generate outputs for the next
iteration—but have to be realized in a distributed setting where the infrastruc-
ture guarantees bounds Γ on the clock skews, networks delays, and execution
times. The design and model checking of such virtually synchronous CPSs is
hard, due to communication delays, race conditions, execution times, and im-
precise local clocks, and due to the state space explosion caused by interleavings.

The PALS (“physically asynchronous, logically synchronous”) design and
analysis pattern [2, 29] greatly simplifies the design and verification of virtu-
ally synchronous distributed real-time system without continuous behaviors: It

2

is sufficient to design and verify the much simpler synchronous design SD—
without asynchrony, network delays, clock skews, etc.—since the corresponding
distributed real-time system PALS(SD, Γ) satisfies the same properties as SD.

Many virtually synchronous CPSs are distributed hybrid systems where local
controllers have continuous environments. Hybrid PALS [8] extends PALS to
such distributed hybrid systems. In such systems we can no longer abstract from
the time when a continuous value is sampled or when a control command is sent,
both of which depend on the local controller’s imprecise clock.

To make the Hybrid PALS design and verification methodology available to
CPS designers, we have developed the HybridSynchAADL modeling language
and analysis tool [24, 25]. Its modeling language (for modeling the synchronous
designs) is an annotated sublanguage of AADL [18], an industrial modeling stan-
dard used in avionics, aerospace, automotive systems, and robotics. We have also
integrated the modeling and formal model checking analysis of HybridSynch-
AADL models into the OSATE modeling environment for AADL.

In HybridSynchAADL, controller behaviors are defined using a subset of
AADL’s Behavior Annex [19], with behaviors defined by transitions with Boolean
guards, variable assignments, conditionals, and so on. Mode-dependent continu-
ous behaviors are specified using differential equations. In [24] we use the rewrit-
ing logic language Maude [16] to formalize complex discrete control programs,
and use Maude combined with SMT solving [11, 31] (in particular, the SMT
solver Yices2 [17]) to symbolically encode continuous behaviors—with all possi-
ble sampling and actuating times depending on imprecise clocks—and provide a
Maude-with-SMT semantics, as well as symbolic reachability analysis, random-
ized simulation, and multithreaded portfolio analysis, for HybridSynchAADL.
In [24, 25] we use HybridSynchAADL to model and analyze a collection of
autonomous drones, and show that HybridSynchAADL in most cases out-
performs the state-of-the-art hybrid systems tools HyComp [15], SpaceEx [20],
Flow* [14], and dReach [22] on a simplified version of the case study.

Up to now HybridSynchAADL has lacked some language features that
would make it more convenient and less error-prone to model sophisticated CPSs.
First of all, we need user-definable data types instead of just basic types. In an
adaptive system, a component may communicate with a significant number of
neighboring components. We therefore extend HybridSynchAADL with ar-
rays, e.g., to conveniently store information about many other nodes. Finally,
we extend HybridSynchAADL with the ability to specify user-defined func-
tions as AADL subprograms. We also extend the HybridSynchAADL prop-
erty specification language accordingly (Section 6). In this paper, we introduce
these new features of HybridSynchAADL (Section 4), and explain how its
Maude-with-SMT semantics has been extended to include these features (Sec-
tion 5). We demonstrate the modeling and analysis convenience of this new
version of our tool with a system of collaborating drones for packet delivery,
where each drone adapts to the motions of the other drones for collision avoid-
ance (Section 6). Our tool and the model of the case study are available at
https://hybridsynchaadl.github.io/artifact/isola2022.

https://hybridsynchaadl.github.io/artifact/isola2022

3

2 Preliminaries

PALS. The PALS pattern [2,29] reduces the problem of designing and verifying
a distributed real-time system to the much easier problems of designing and
verifying its synchronous design, provided that the underlying infrastructure
guarantees bounds Γ on execution times, clock skews, and network delays. For a
synchronous design SD, bounds Γ , and a period p, PALS provides the distributed
real-time system PALS(SD, Γ, p), which is stuttering bisimilar to SD.

The synchronous design SD is formalized as the synchronous composition
of an ensemble of communicating state machines [29]. At the beginning of each
iteration, each state machine performs a transition based on its current state
and its inputs, proceeds to the next state, and generates outputs. All machines
perform their transitions at the same time, and the outputs to other machines
become inputs at the next iteration.

Hybrid PALS. Hybrid PALS [8] extends PALS to virtually synchronous CPSs
with environments that exhibit continuous behaviors. The physical environment
EM of a machine M has real-valued parameters ~x = (x1, . . . , xl). The continuous
behaviors of ~x are modeled by ordinary differential equations (ODEs) that spec-
ify different trajectories on ~x. EM also defines which trajectory the environment
follows, as a function of the last control command received by EM .

The local clock of a machine M can be seen as a function cM : R≥0 → R≥0,
where cM (t) is the value of the local clock at time t, satisfying |cM (t)− t| < ε for
the maximal clock skew ε > 0 [29]. In its ith iteration, a controller M samples
the values of its environment at time cM (i ·p)+ ts, where ts is the sampling time,
and then executes a transition. As a result, the new control command is received
by the environment at time cM (i · p) + ta, where ta is the actuating time.

AADL. The Architecture Analysis & Design Language (AADL) is an industrial
modeling standard used in avionics, automotive, medical devices, and robotics
to describe an embedded real-time system [18]. AADL models describe a system
of hardware and software components. Software components include: threads
modeling the application software; data representing data types; subprograms
representing subroutines; and systems defining top-level components.

In AADL, a component type specifies the component’s interface (e.g., ports)
and properties (e.g., periods), and a component implementation specifies its in-
ternal structure as subcomponents and connections linking their ports. AADL
constructs may have properties describing their parameters, declared in property
sets. Thread and subprogram behavior is modeled as a guarded transition sys-
tem with local variables using AADL’s Behavior Annex [19]. When a thread is
activated, enabled transitions are applied until a complete state is reached.

Maude with SMT. Maude [16] is a language and tool for formally specifying and
analyzing distributed systems in rewriting logic. A rewrite theory [28] is a triple
R = (Σ,E,R), where (Σ,E) is an equational theory—specifying system states
as an algebraic data type—with Σ a signature (declaring sorts, subsorts, and

4

function symbols) and E a set of equations; and R is a set of rewrite rules—
specifying system transitions—of the form l : t −→ t′ if cond, where l is a label,
t and t′ are terms, and cond is a conjunction of equations and rewrites.

A declaration class C | att1 : s1, . . . , attn : sn declares a class C with
attributes att1, . . . , attn of sorts s1, . . . , sn. An object o of class C is represented
as a term < o : C | att1 : v1, . . . , attn : vn > of sort Object, where vi is the value
of atti. A subclass inherits the attributes and rewrite rules of its superclasses. A
configuration is a multiset of objects and messages, and has sort Configuration,
with multiset union denoted by juxtaposition.

In addition to its explicit-state analysis methods for concrete states (ground
terms), Maude also provides SMT solving and symbolic reachability analysis for
constrained terms, using connections to Yices2 [17] and CVC4 [13]. A constrained
term is a pair φ ‖ t that symbolically represents all instances of the term t
satisfying the SMT constraint φ. A symbolic rewrite on constrained terms can
symbolically represent a (possibly infinite) set of system transitions [11,31].

3 Overview of HybridSynchAADL

This section gives a brief overview of the HybridSynchAADL language and
its formal semantics as defined in [24,25].

3.1 The HybridSynchAADL Modeling Language

The HybridSynchAADL language is a subset of AADL extended with the
property set Hybrid SynchAADL. HybridSynchAADL can specify synchronous
designs of distributed controller components, (local) environment components
with continuous dynamics, and interactions between controllers and environ-
ments based on imprecise local clocks and sampling and actuation times.

Discrete controllers are standard software components in the Synchronous
AADL subset of AADL [7, 9]. This subset includes system, process, and thread
components; data components for base types; ports and connections; and thread
behaviors defined in the Behavior Annex [19]. However, the subset does not
include composite data types, subprograms, and arrays of components and ports.

Environments specify real-valued state variables that change continuously
over time. The continuous dynamics of state variables can be declared using
either ODEs or continuous real functions. An environment can have multiple
modes for different continuous dynamics. A controller command may change the
mode of the environment or the value of a state variable.

3.2 Symbolic Semantics of HybridSynchAADL

This section briefly summarizes the Maude-with-SMT semantics of the original
HybridSynchAADL language; see [24] for details.

5

thread CtrlThread
features
c: out event port;
i: in data port Base_Types::Float;
o: out data port Base_Types::Float;

end CtrlThread;

thread implementation CtrlThread.impl
subcomponents
v: data Base_Types::Float;

annex behavior_specification {**
states
s0: initial complete state; s1: state;

transitions
s0 -[on dispatch]-> s1 {v := (i + v) / 2};
s1 -[v > 25]-> s0 {c!};
s1 -[otherwise]-> s0 {o := v}; **};

end CtrlThread.impl;

not xb or (yb and xv > 0) ||
< ctrlThread : Thread |
features :

< c : DataOutPort |
content : * # false, ... >

< i : DataInPort |
content : 0 # yb, ... >

< o : DataOutPort |
content : 0 # true, ... >,

subcomponents :
< v : Data | value : xv # xb, ... >,

transitions :
s0 -[on dispatch]-> s1
{ v := (i + v) / 2 } ;
s1 -[v > 25]-> s0 { c ! } ;
s1 -[otherwise]-> s0 { o := v },

currState : s0,
completeStates : s0, ... >

Fig. 1. A thread component and a constrained term representation.

Representing HybridSynchAADL Models. Each component is represented as an
object instance of a subclass of the base class Component. The attribute features
denotes a set of Port objects, subcomponents denotes a set of Component objects.
connections denotes its connections, and properties denotes its properties.

class Component | features : Configuration, properties : PropertyAssociation,
subcomponents : Configuration, connections : Set{Connection} .

The type of each AADL component corresponds to a subclass of Component.
The class Thread has attributes for thread behaviors, such as transitions, states,
and local variables. The class Env for environments has attributes for continuous
dynamics, sampling and actuating times, and mode transitions.

Ports and data components are also modeled as objects. Data components
are represented as instances of the class Data, where value denotes the current
value. A data content is represented as a pair e # b of an expression e and a
Boolean condition b. If b is false, then there is no content (i.e., some “don’t care”
value ⊥) in the data/port; otherwise, the value of the content is e.

class Data | value : DataContent . subclass Data < Component .
op _#_ : Exp BoolExp -> DataContent [ctor] .

We use a constrained object of the form φ || obj to symbolically represent a
(possibly infinite) set of object instances of obj, where φ(x1, . . . , xn) is an SMT
constraint and obj(x1, . . . , xn) is a “pattern” over SMT variables x1, . . . , xn.
Figure 1 shows an example of a thread component and its representation.

Specifying the Behavior. We define various semantic operations on constrained
terms to specify the behavior of components, threads, environments, etc. In
particular, the operation executeStep defines a symbolic rewrite relation for a
“big-step” synchronous iteration of a single AADL component.

6

crl executeStep(
PHI || < C : Thread | features : PORTS, variables : VIS, completeStates : LS,

transitions : TRS, subcomponents : COMPS, properties : PRS, currState : L >)
=> PHI’ || < C : Thread | features : writePort(FM’,PORTS’),

subcomponents : writeData(DATA’,COMPS), currState : L’ >
if {PORTS’,FM} := readPort(PORTS) /\ DATA := readData(COMPS)
/\ execTrans(PHI || {emptyVal(VIS), FM, DATA, PRS}, TRS, L, LS) => L’ | FM’ | DATA’ | PHI’ .

crl execTrans(PHI || BCF, TRS, L, LS)
=> if L’ in LS then L’ | FM’ | DATA’ | PHI’

else execTrans(PHI’ || {local(BCF), FM’, DATA’, PRS}, TRS, L’, LS) fi
if (L -[GC]-> L’ ACT) ; TRS’ := TRS /\ B := guardConst(GC, L, TRS’, BCF)
/\ execAction(ACT, (PHI and B) || BCF) => PHI’ || {VAL’, FM’, DATA’, PRS} .

crl execAction(ID := EXP, PHI || BCF) => PHI’ || update(ID, D, BCF)
if eval(EXP, PHI || BCF) => PHI’ || D .

eq update(VI, D, VAL | FM | DATA | PRS) = insert(VI,D,VAL) | FM | DATA | PRS . --- local
eq update(PI, D, VAL | FM | DATA | PRS) = VAL | insert(PI,D,FM) | DATA | PRS . --- port
eq update(CI, D, VAL | FM | DATA | PRS) = VAL | FM | insert(CI,D,DATA) | PRS . --- data

Fig. 2. Some semantic operations for thread components.

A symbolic synchronous step of the entire system is then formalized by the
following rule step. A symbolic rewrite from {φ || obj} to {φ′ || obj ′} holds if
there is a symbolic rewrite from executeStep(φ || obj) to φ′ || obj ′, provided
that obj has no ports and the constraint φ′ is satisfiable.

crl [step]: {PHI || < C : System | features : none >} => {PHI’ || OBJ’}
if executeStep(PHI || < C : System | >) => PHI’ || OBJ’ /\ check-sat(PHI’) .

Figure 2 shows the definition of executeStep and auxiliary operations for
threads. In the first rule, readPort returns a map from each input port to its
content; readData returns a map from each data subcomponent to its value;
execTrans executes the transition system, given a behavior configuration BCF of
local variables, port contents, data component values, and properties; writePort
updates the output ports; and writeData updates the data subcomponents. In
the second rule, a transition L -[GC]-> L’ ACT from the current state L is chosen
nondeterministically, and execAction executes the actions ACT with the guard
condition GC; if the next state L’ is a complete state (L’ in LS), the operation
ends; otherwise, execTrans is applied again. The operation execAction computes
a behavior action; e.g., the third rule defines the semantics of an assignment
action id := exp, where eval evaluates the data content D of an expression.

4 An Extension of HybridSynchAADL

In this section we extend the HybridSynchAADL modeling language in [24,25]
with the following AADL constructs: struct and array data types, arrays of
components and ports, and subprograms.

7

data Vector
properties
Data_Model::Data_Representation => Struct;
Data_Model::Base_Type => (
classifier (Base_Types::Float),
classifier (Base_Types::Float));

Data_Model::Element_Names => ("x", "y");
end Vector;

data VectorArray
properties
Data_Model::Data_Representation => Array;

Data_Model::Base_Type =>
(classifier (Vector));

Data_Model::Dimension => (5);
end VectorArray;

data TwoDimIntArray
properties
Data_Model::Data_Representation => Array;
Data_Model::Base_Type => (

classifier (Base_Types::Integer));
Data_Model::Dimension => (10, 20);

end TwoDimIntArray;

Fig. 3. Examples of composite data types in AADL.

Composite Data Types. We now support (nested) struct and array types defined
in the Data Modeling Annex [32] of AADL. They are declared as user-defined
data components annotated with Data_Model properties representing the details
of the data types. In particular, the property Data_Model::Data_Representation
denotes the representation of a data type, such as Struct and Array.

Figure 3 shows examples of struct and array data types. Vector is a struct
type with two floating-point elements x and y, declared using Data_Model prop-
erties. VectorArray is a one-dimensional array of Vector, and TwoDimIntArray
is a two-dimensional array of integers, where the sizes of array dimensions are
declared using Data_Model::Dimension. In AADL, array indices begin with 1.

Arrays of Components and Ports. In AADL, multiple instances of the same
component type can be declared as an array of the component type. For example,
the system component Top.impl in Fig. 4, contains an array of Agent and an
array of Tower, where both Agent and Tower have array ip of input ports.

The connections between arrays of components/ports are declared with the
properties Connection_Set and Connection_Pattern. A connection set specifies
a list of individual connections using array indices. A connection pattern uses a
predefined list of frequently used connection sets. For example, the connection
C1 in Fig. 4 uses a connection set: each pair [src=>(i, j); dst=>(k, l);] specifies
a connection from output port ot[i] of subcomponent agent[j] to input port
ip[k] of subcomponent tower[l]. The connection C2 uses a connection pattern:
output port sd of agent[i] connects to input port ip[j] of agent[k], where
i = j (One_To_One) and each j is related to all k’s (One_To_All).

Subprograms. In AADL, subprograms represent sequentially executable code.
Subprogram components can have data parameters to pass and return values.
Parameters can be input, output, or both input and output, where input param-
eters are readable and output parameters are writable. Subprogram components
can also have data subcomponents to indicate local temporary variables.

In HybridSynchAADL, subprogram behavior is modeled using guarded
transitions written in the Behavior Annex in a way similar to thread behavior.
The execution of a subprogram starts in its initial state and ends in a final state.

8

system Agent
features
ip: in data port Vector [3];
sd: out data port Vector;
ot: out data port Vector [2];

end Agent;

system Tower
features
ip: in data port Vector [3];

end Tower;

system Top
end Top;

system implementation Top.impl
subcomponents

agent: system Agent [3]; tower: system Tower [2];
connections

C1: port agent.ot -> tower.ip;
C2: port agent.sd -> agent.ip {Connection_Pattern

=> ((One_To_One, One_To_All));};
properties

Connection_Set =>
([src=>(1,1);dst=>(1,1);], [src=>(2,1);dst=>(1,2);],
[src=>(1,2);dst=>(2,1);], [src=>(2,2);dst=>(2,2);],
[src=>(1,3);dst=>(3,1);], [src=>(2,3);dst=>(3,2);])

applies to C1;
end Top.impl;

Fig. 4. Arrays of subcomponents and features.

subprogram getDist
features
p: in parameter Vector;
q: in parameter Vector;
d: out parameter

Base_Types::Float;
end getDist;

subprogram implementation getDist.l1
annex behavior_specification {**
states

s0: initial state; s1: final state;
transitions

s0 -[]-> s1 {d := abs(p.x - q.x) + abs(p.y - q.y)}; **};
end getDist.l1;

Fig. 5. A subprogram getDist.

A subprogram has one initial state and one or more final states. Subprograms
can be called within threads and subprograms (including recursively).

Fig. 5 shows a subprogram getDist which computes the distance between
two vectors, given by the input parameters p and q, and returns the value to the
caller using the output parameter d. The implementation getDist.l1 returns the
rectilinear distance between input parameters p and q using a single transition
from the initial state s0 to the final state s1.

5 Extending the Semantics of HybridSynchAADL

This section presents the Maude-with-SMT semantics for the new features intro-
duced in Sec. 4 by extending the original semantics of HybridSynchAADL. As
those features extend the discrete subset of HybridSynchAADL, we have only
changed the part for discrete controllers in the original semantics. In particular,
the definition of execAction is significantly changed to support subprograms and
assignment actions with nested struct/array targets.

5.1 Representation of the Additional Features

An array content is represented as a term array(1 Z⇒ d1; 2 Z⇒ d2; . . . ;n Z⇒ dn)
of sort ArrayContent, where the i-th element is data content di. Likewise, a
struct content is represented as struct(c1 Z⇒ d1; c2 Z⇒ d2; . . . ; cn Z⇒ dn) of sort

9

< TopInstance : System |
features : none,
subcomponents :
< agent[1] : System | ... >
< agent[2] : System | ... >
< agent[3] : System | ... >
< tower[1] : System | ... >
< tower[2] : System | features :

< ip[1] : DataInPort | content :
struct(x |==> 0 # true ;

y |==> 0 # true), ... >
< ip[2] : DataInPort | ... >
< ip[3] : DataInPort | ... >, ... >,

connections :
agent[1] .. ot[1] --> tower[1] .. ip[1];
agent[2] .. ot[1] --> tower[1] .. ip[2];
agent[3] .. ot[1] --> tower[1] .. ip[3];
agent[1] .. ot[2] --> tower[2] .. ip[1];
agent[2] .. ot[2] --> tower[2] .. ip[2];
agent[3] .. ot[2] --> tower[2] .. ip[3];
agent[1] .. sd --> agent[1]. ip[1];
agent[1] .. sd --> agent[2]. ip[1];
agent[1] .. sd --> agent[3]. ip[1];
...
agent[3] .. sd --> agent[3]. ip[3];

properties : none >

Fig. 6. A Maude representation of Top.

StructContent, where the element ci is di. Array and struct contents can be
nested, since ArrayContent and StructContent are subsorts of DataContent.

Arrays and array connections of components and ports are fully instantiated
in our representation. Figure 6 shows an example of a Maude representation of
Top.impl in Fig. 4. Component arrays agent and tower, and port array ip are
instantiated as concrete objects. Array connections, declared using a connection
set and a connection pattern, are also instantiated as concrete connections.

Subprograms are represented as instances of the class Subprogram, similar to
Thread. The attribute args denotes the list of parameters; transitions denotes
the set of transitions; currState denotes the current state; finalStates denotes
the final states; and variables denotes the local variables and their types.

class Subprogram | args : List{FeatureId}, transitions : Set{Transition},
currState : Location, finalStates : Set{Location},
variables : Map{VarId,DataType},

subclass Subprogram < Component .

A parameter of a subprogram is represented as an instance of a subclass
of the class Param. The features attribute of the class Subprogram includes a
set of Param objects instead of Port objects. Notice that features includes an
unordered set of parameters, and args defines the argument order of them.

class Param | type : DataType, properties : PropertyAssociation .
class InParam . class OutParam . class InOutParam .
subclass InOutParam < InParam OutParam < Param .

We define the function subprogram that returns a subprogram instance from
its fully qualified name (automatically synthesized by code generation).

5.2 Semantic of Composite Data Types

We extend the definitions of the two operations eval—evaluating expressions—
and executeAction—executing actions—for struct and array data types. For
eval, we define the cases for struct expressions exp.id and array expressions

10

exp′[exp]. For executeAction, we define the case of an assignment action that
includes (nested) struct and array expressions on the left-hand side.

The following rule defines the case of struct expressions exp.id for eval. Given
a constrained behavior configuration PHI || BCF (including local variables, port
contents, data component values, and properties), we first evaluate the struct
data content of exp and then choose the element id from the content:

crl eval(EXP . CI, PHI || BCF) => PHI’ || D
if eval(EXP, PHI || BCF) => PHI’ || struct(CI |==> D ; STR) .

Similarly, for array expressions exp′[exp], we first evaluate the index data
content e # b of exp and the array data content of exp′. Because e may be a
symbolic expression (not an integer constant), we nondeterministically choose
the i-th element from the array data content with the constraint i = e.

crl eval(EXP’[EXP], PHI || BCF) => (PHI’’ and B and I === E) || D
if eval(EXP, PHI || BCF) => PHI’ || E # B
/\ eval(EXP’, PHI’ || BCF) => PHI’’ || array(I |==> D ; ARR) .

Consider an assignment action a.x[1].y := e with a nested struct/array target.
The intuitive behavior is as follows. We first evaluate the “top” data content of a,
e.g., td = struct(x Z⇒ array(1 Z⇒ struct(y Z⇒ . . . ; . . .); . . .); . . .). We then update
the sub-content of td at the “position” indicated by “.x[1].y” with e.

The following rules specify the above behavior. The function evalPos returns
the top identifier and a position; e.g., evalPos(a.x[1].y,nil) returns the pair
{a, (.x)[1](.y)}. The substitution operation td[pos ← d](φ ‖ bcf) computes a new
data content obtained by replacing the content of position pos with d.

crl execAction(TARGET := EXP, PHI || BCF) => assign(TARGET, D, PHI’ || BCF)
if eval(EXP, PHI || BCF) => PHI’ || D .

crl assign(TARGET, D, PHI || BCF) => PHI’ || update(ID, TD’, BCF)
if {ID, POS} := evalPos(TARGET, nil) /\ eval(ID, PHI || BCF) => PHI’’ || TD
/\ TD [POS <- D] (PHI’’ || BCF) => PHI’ || TD’ .

5.3 Semantics of Subprogram Calls

We define executeAction for subprogram calls f !(exp1, . . . , expn) as follows. We
first obtain the subprogram instance for f , and evaluate the parameters based
on the caller’s behavior configuration. We then use execTrans to execute the
subprogram’s transition system with a new behavior configuration. Finally, we
update the caller’s behavior configuration based on the output parameters.

crl executeAction(F!(EXPS), PHI || BCF) => retOutParams(OM, FM’, PHI’ || BCF)
if < O : Subprogram | features : PARAMS, properties : PRS, args : PIS,

transitions : TRS, finalStates : LS,
variables : VIS, currState : L > := subprogram(F)

/\ {OM, FM} := outParams(EXPS, PIS, PARAMS, none, empty)

11

/\ {FM’’, PHI’’} := inParams(EXPS, PIS, PARAMS, BCF, {FM, PHI})
/\ execTrans(PHI’’ || {emptyVal(VIS), FM’’, empty, PRS}, TRS, L, LS)

=> L’ | FM’ | empty | PHI’ .

The operation outParams returns the output targets OM in the argument list.
After the call ends, these targets are updated with the values assigned to the
output parameters during subprogram execution. The operation outParams also
returns initial contents FM (with no value bot) for the output parameters.

eq outParams((EXP,EXPS), PI PIS, < PI : OutParam | type : TY > PARAMS, OM, FM)
= outParams(EXPS, PIS, PARAMS, insert(PI,EXP,OM), insert(PI,bot(TY),FM)) .
eq outParams(EXPS, PIS, PARAMS, OM, FM) = {OM, FM} [owise] .

The operation inParams evaluates the values of the input expressions in the
argument list using eval. Notice that the initial contents generated by outParams
are updated with the evaluated values for input-output parameters.

eq inParams((EXP, EXPS), PI PIS, < PI : InParam | > PARAMS, BCF, {FM, PHI})
= inParams(EXPS, PIS, PARAMS, BCF, evalInParam(EXP, BCF, {FM, PHI})) .
eq inParams(EXPS, PIS, PARAMS, BCF, {FM, PHI}) = {FM, PHI} [owise] .
crl evalInParam(EXP, BCF, {FM, PHI}) => {insert(PI,D,FM), PHI’}
if eval(EXP, PHI || BCF) => PHI’ || D .

Finally, the operation retOutParams updates the output parameter targets
(generated by outParams) with the values assigned to the output parameters. If
no value is assigned to an output parameter, the target is not updated.

ceq retOutParams((PI |-> TARGET, OM), FM, PHI || BCF) = retOutParams(OM, FM,
assign(TARGET, D, PHI || BCF)) if D := data(FM[PI]) /\ hasValue(D) .

eq retOutParams(empty, FM, PHI || BCF) = PHI || BCF .

6 Case Study: A Packet Delivery System

This section shows how HybridSynchAADL can be used to design and analyze
a collection of collaborating autonomous drones, taking into account network
delays, clock skews, execution times, continuous dynamics, etc. The new features
supported by HybridSynchAADL make it easy to specify and analyze multiple
instances of components with complex control programs.

6.1 System Description

We consider a packet delivery system adapted from [35]. As illustrated in Fig. 7,
there are drones, packets, and charging stations. A drone picks up a packet and
transports it to its destination. Drones use energy when moving and can recharge
at charging stations. Each drone exchanges its position with other drones to
adapt its movement to the motions of the other drones.

The continuous dynamics of the i-th drone is specified by the ODEs ~̇xi = ~vi

and ėi = −h · |~vi|, where ~xi, ~vi, and ei denote its position, velocity, and energy,

12

Fig. 7. A packet delivery sys-
tem.

init select
packet done

failedchoose
action

arrived
at goal plan

no more
packet

goal := chosen
packet location

not enough energy
or collision

find
station

need charging

goal := nearest
station

pickup
packet

go
al =
 pa
cke
t

loc
ati
onpa

ck
et
 d
el
iv
er
ed

(g
oa
l =
 p
ac
ke
t d
es
tin
at
io
n)

charge

go
al
←
or
ig
in
al
go
al

packet picked up

packet u
navailab

le

move
determine velocity

need not charging
request
pickup

goal := packet
destination

goal = charging
station

Fig. 8. The control logic of drones.

respectively, and h denotes the energy consumption rate. The controller samples
the drone’s position, velocity, and energy at its sampling time, and gives a new
velocity value to the environment at its actuating time.

Figure 8 illustrates the control logic of drones, where double circles indicate
complete states, and init denotes the initial state. The controller uses a state
variable goal to indicate the drone’s target, such as a packet location, a packet
destination, or a charging station location. The drone’s behavior is determined
in state choose_action, based on the current values of state variables (including
goal) and the sampled position and energy from the environment.

A new velocity is calculated in state plan to move towards the current goal
while adapting to the motions of the other drones. In this paper, we use this
adaptation framework to implement a simple collision avoidance technique: each
drone has a priority, and when a potential collision is detected (e.g., the distance
between two drones is below a certain threshold), a drone with a lower priority
must yield to a drone with a higher priority.

6.2 The HybridSynchAADL Model

Figure 9 shows the top-level system component that contains Drone and Packet
component arrays. We model the locations of charging stations as a constant
array. The period, maximal clock skew, and sampling and actuating times are
declared using Hybrid_SynchAADL properties. A drone can send a request to a
packet (connection C1) and its position to the other drones (connection C3), and
a packet can reply its destination to a drone (connection C2). In this section, we
consider a packet delivery system with three drones and two packets.

A Packet component chooses one of the drones that have sent the request,
and sends its destination to the selected drone. A Drone contains a controller and
an environment connected to each other using ports. The environment declares
the continuous dynamics of the drone’s position, velocity, and energy mentioned
above. We assume that a drone moves in a two-dimensional space. The controller
also communicates with the outside components using Drone’s ports.

13

system PacketDelivery end PacketDelivery;

system implementation PacketDelivery.impl
subcomponents
drone: system Drone[3];
packet: system Packet[2];
connections
C1: port drone.req -> packet.req;
C2: port packet.dest -> drone.dest;
C3: port drone.oPos -> drone.iPos
{Connection_Pattern =>
((One_To_One, One_To_All));};

properties
Hybrid_SynchAADL::Synchronous => true;
Period => 100ms;
Timing => Delayed applies to C1,C2,C3;

Hybrid_SynchAADL::Max_Clock_Deviation => 5ms;
Hybrid_SynchAADL::Sampling_Time => 20ms..25ms;
Hybrid_SynchAADL::Response_Time => 40ms..45ms;
Connection_Set => ([src=>(1,1); dst=>(1,1);],

[src=>(1,2); dst=>(2,1);],
[src=>(1,3); dst=>(3,1);],
[src=>(2,1); dst=>(1,2);],
[src=>(2,2); dst=>(2,2);],
[src=>(2,3); dst=>(3,2);]) applies to C1;

Connection_Set => ([src=>(1,1); dst=>(1,1);],
[src=>(2,1); dst=>(1,2);],
[src=>(3,1); dst=>(1,3);],
[src=>(1,2); dst=>(2,1);],
[src=>(2,2); dst=>(2,2);],
[src=>(3,2); dst=>(2,3);]) applies to C2;

end PacketDelivery.impl;

Fig. 9. A top level component in HybridSynchAADL.

Figure 10 shows part of the HybridSynchAADL specification for a con-
troller thread that implements the control logic of Fig. 8. It contains several
state variables, such as goal for the current target and chargeStation for the
charging station locations. It also uses several subprograms, such as chkClose to
check whether the drone is too close to other drones with higher priority. The
entire HybridSynchAADL specification of our model is given in the appendix
and is available at https://hybridsynchaadl.github.io/artifact/isola2022.

6.3 Formal Analysis

We are interested in analyzing whether all drones complete their tasks (i.e., going
to state done) within a certain time, e.g., 10 seconds. This can be expressed as the
following invariant property using HybridSynchAADL’s property specification
language. We analyze this property up to bound 10,100 ms.

invariant [complete] :
?initial ==> (not clock.time >= 10000) or ?allDone in time 10100 ms;

The above propositions allDone and initial are declared as follows. The
declaration of allDone includes universal quantification over array index i, which
is a new feature of HybridSynchAADL proposed in this work. Notice that
there are infinitely many initial states satisfying initial.

proposition [allDone]: forall i in {1,2,3}. drone[i].ctrl.proc.thrd @ done;
proposition [initial]:
abs(drone[1].env.x - 2.3) < 0.3 and abs(drone[1].env.y - 0.7) < 0.3 and
abs(drone[2].env.x - 0.7) < 0.3 and abs(drone[2].env.y - 2.3) < 0.3 and
abs(drone[3].env.x - 12.0) < 0.3 and abs(drone[3].env.y - 12.0) < 0.3;

We find a counterexample by randomized simulation in one minute. The
counterexample shows that a collision occurs after five iterations (500 ms), be-

https://hybridsynchaadl.github.io/artifact/isola2022

14

thread DroneThread
features
req: out data port Base_Types::Boolean[];
dest: in data port Vector[];
oPos: out data port Vector;
iPos: in data port Vector[];
...

end DroneThread;

thread implementation DroneThread.impl
subcomponents
goal: data Vector;
chargeStation: data VectorArray; ...

annex behavior_specification {**
variables
cur: Vector; ...

states
init: initial complete state; ...

transitions
...
plan -[]-> move {
chkClose.impl! (cur, iPos,..., close);
if (close) set_hover! elsif ...

};
...

**};
end DroneThread.impl;

subprogram chkClose
features

p: in parameter Vector;
pos: in parameter VectorArray;
cand: in parameter BooleanArray;
size: in parameter Base_Types::Integer;
thld: in parameter Base_Types::Float;
output: out parameter Base_Types::Boolean;

end detectCollision;

subprogram implementation chkClose.impl
annex behavior_specification {**
variables

d: Base_Types::Float;
i: Base_Types::Integer;
r : Base_Types::Boolean;

states
s0: initial state; sf: final state;
sl: state;

transitions
s0 -[]-> sl { r := false; i := 1 };
sl -[r = false and i <= size]-> sl {
getDist.l1! (p, pos[i], d);
r := d < thld and cand[i]; i := i + 1};

sl -[otherwise]-> sf { output := r };
**};
end detectCollision.impl;

Fig. 10. A controller thread in HybridSynchAADL (‘...’ indicates omitted parts).

cause the subprogram chkClose does not consider clock skews and sampling/ac-
tuating times. Each drone’s position is sampled from the environment at some
time in the sampling time interval, also perturbed by a clock skew. The calcula-
tion of chkClose is not precise enough without considering these values.

We therefore modify the implementation DroneThread.impl to mitigate this
problem as follows. When invoking chkClose, we use an extra padding value
depending on the maximal clock skew and sampling/actuating time intervals.
With this change, no counterexample of success is found for 3 hours using
randomized simulation. Furthermore, we verify that no such counterexample
exists up to bound 500 ms using symbolic reachability analysis for the following
invariant property safety, which takes about 126 minutes.

invariant [safety]: ?initial ==> not ?failure in time 500 ms;
proposition [failure]: exists i in {1,2,3}. drone[i].ctrl.proc.thrd @ fail;

7 Related Work

PALS is a synchronizer for CPSs without continuous behaviors, and is therefore
related to time-triggered architectures (TTA) [23], but typically allows shorter
periods, etc. See [6,34] for comparisons between PALS and TTA. MSYNC [6] gen-

15

eralizes both TTA and PALS (and its multirate extension Multirate PALS [5]).
Unlike Hybrid PALS, neither of these take continuous behaviors into account.

Synchronous AADL [7, 10] and Multirate Synchronous AADL [9] also use
AADL to define synchronous PALS designs, but do not consider continuous
behaviors. As mentioned above, this work extends HybridSynchAADL in [24,
25] with features making it easy to specify complex systems, and demonstrate
the extended version of the language and analysis tool on a new case study.

Unlike other hybrid extensions of AADL, e.g., [1,12,27,30], HybridSynch-
AADL supports the specification of complex controllers using (a subset of)
AADL’s expressive Behavior Annex, and we also consider (virtually synchronous)
CPSs—with clock skews, network delays, etc. (using the Hybrid PALS equiva-
lence). See [24, Section 10] for a more detailed discussion of related work.

8 Concluding Remarks

HybridSynchAADL is an AADL-based modeling language and formal analysis
tool for sophisticated virtually synchronous (distributed) CPSs—with complex
controllers, imprecise local clocks, and continuous behaviors—that is fully in-
tegrated into the OSATE tool environment for AADL. Control programs are
defined using (a significant subset of) AADL’s intuitive and expressive Behavior
Annex, and continuous behaviors are given by differential equations. Further-
more, the performance of our tool compares favorably with (less expressive)
state-of-the-art hybrid systems analysis tools.

In this paper we have extended HybridSynchAADL with (AADL) features
for data types, arrays, and user-defined functions/subprograms. This should
make the modeling of complex CPSs—including adaptive CPSs—significantly
more convenient and less error-prone. We have introduced the language ex-
tensions (including to the property specification language), have extended the
Maude-with-SMT formal semantics of HybridSynchAADL with the new fea-
tures, and have illustrated the convenience of the extended language by modeling
and analyzing a complex collection of packet-delivery drones that adapt to the
movements of other drones to avoid collision.

References

1. Ahmad, E., Larson, B.R., Barrett, S.C., Zhan, N., Dong, Y.: Hybrid Annex: an
AADL extension for continuous behavior and cyber-physical interaction modeling.
In: Proc. ACM SIGAda annual conference on High integrity language technology
(HILT’14). ACM, New York, NY, USA (2014)

2. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: Proc. RTSS. pp. 161–
170. IEEE, USA (2009)

3. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O.: Formal methods based de-
velopment of a PCA infusion pump reference model: Generic infusion pump (GIP)
project. In: HCMDSS-MDPnP. pp. 23–33. IEEE (2007)

16

4. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: Designing and verifying dis-
tributed cyber-physical systems using Multirate PALS: An airplane turning control
system case study. Science of Computer Programming 103, 13–50 (2015)

5. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multirate distributed
real-time systems. Science of Computer Programming 91, 3–44 (2014)

6. Bae, K., Ölveczky, P.C.: MSYNC: A generalized formal design pattern for virtu-
ally synchronous multirate cyber-physical systems. ACM Trans. Embedd. Comput.
Syst. (Proc. EMSOFT’21) 20(5s,Article 105) (2021)

7. Bae, K., Ölveczky, P.C., Al-Nayeem, A., Meseguer, J.: Synchronous AADL and
its formal analysis in Real-Time Maude. In: Proc. ICFEM’11. LNCS, vol. 6991.
Springer, Berlin, Heidelberg (2011)

8. Bae, K., Ölveczky, P.C., Kong, S., Gao, S., Clarke, E.M.: SMT-based analysis of
virtually synchronous distributed hybrid systems. In: Proc. HSCC. pp. 145–154.
ACM, New York, NY, USA (2016)

9. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of Mul-
tirate Synchronous AADL. In: Proc. FM’14. LNCS, vol. 8442. Springer (2014)

10. Bae, K., Ölveczky, P.C., Meseguer, J., Al-Nayeem, A.: The SynchAADL2Maude
tool. In: Proc. FASE’12. LNCS, vol. 7212. Springer, Berlin, Heidelberg (2012)

11. Bae, K., Rocha, C.: Symbolic state space reduction with guarded terms for rewrit-
ing modulo SMT. Science of Computer Programming 178, 20–42 (2019)

12. Bao, Y., Chen, M., Zhu, Q., Wei, T., Mallet, F., Zhou, T.: Quantitative per-
formance evaluation of uncertainty-aware Hybrid AADL designs using statistical
model checking. IEEE Transactions on CAD of Integrated Circuits and Systems
36(12), 1989–2002 (2017)

13. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: CAV. pp. 171–177. Springer (2011)

14. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Proc. CAV. pp. 258–263. Springer (2013)

15. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: An SMT-based model
checker for hybrid systems. In: Proc. TACAS. LNCS, vol. 9035. Springer, Berlin,
Heidelberg (2015)

16. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Mart́ı-Oliet, N., Talcott,
C.: All About Maude – A High-Performance Logical Framework, Lecture Notes in
Computer Science, vol. 4350. Springer, Berlin, Heidelberg (2007)

17. Dutertre, B.: Yices 2.2. In: Proc. CAV. LNCS, vol. 8559, pp. 737–744. Springer,
Berlin, Heidelberg (July 2014)

18. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis and Design Language. Addison-Wesley, USA
(2012)

19. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.:
The AADL Behaviour Annex - experiments and roadmap. In: Proc. ICECCS’07.
IEEE, USA (2007)

20. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Proc. CAV. LNCS, vol. 6806. Springer, Berlin, Heidelberg (2011)

21. Kim, C., Sun, M., Mohan, S., Yun, H., Sha, L., Abdelzaher, T.F.: A framework for
the safe interoperability of medical devices in the presence of network failures. In:
ICCPS. pp. 149–158 (2010)

22. Kong, S., Gao, S., Chen, W., Clarke, E.M.: dReach: δ-reachability analysis for
hybrid systems. In: Proc. TACAS. Lecture Notes in Computer Science, vol. 7898,
pp. 200–205. Springer, Berlin, Heidelberg (2015)

17

23. Kopetz, H., Bauer, G.: The time-triggered architecture. Proceedings of the IEEE
91(1), 112–126 (2003)

24. Lee, J., Bae, K., Ölveczky, P.C., Kim, S., Kang, M.: Modeling and formal analy-
sis of virtually synchronous cyber-physical systems in AADL. Software Tools for
Technology Transfer (2022), to appear (preliminary version available at https:
//hybridsynchaadl.github.io/artifact/isola2022/sttt-paper.pdf)

25. Lee, J., Kim, S., Bae, K., Ölveczky, P.C.: HybridSynchAADL: Modeling and formal
analysis of virtually synchronous CPSs in AADL. In: Proc. CAV’21. LNCS, vol.
12759, pp. 491–504. Springer, Berlin, Heidelberg (2021)

26. Leen, G., Heffernan, D., Dunne, A.: Digital networks in the automotive vehicle.
Computing & Control Engineering Journal 10(6), 257–266 (1999)

27. Liu, J., Li, T., Ding, Z., Qian, Y., Sun, H., He, J.: AADL+: a simulation-based
methodology for cyber-physical systems. Frontiers Comput. Sci. 13(3), 516–538
(2019)

28. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

29. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. Theoretical Computer Science
451, 1–37 (2012)

30. Qian, Y., Liu, J., Chen, X.: Hybrid AADL: a sublanguage extension to AADL. In:
Proc. Internetware’13. ACM, New York, NY, USA (2013)

31. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. Journal of Logical and Algebraic Methods in Programming 86(1), 269–
297 (2017)

32. SAE International: Architecture analysis and design language (AADL) annex vol-
ume 2: Annex B: Data modeling annex (2011)

33. Steiner, W., Bauer, G., Hall, B., Paulitsch, M., Varadarajan, S.: TTEthernet
dataflow concept. In: 2009 Eighth IEEE International Symposium on Network
Computing and Applications. pp. 319–322. IEEE (2009)

34. Steiner, W., Rushby, J.: TTA and PALS: Formally verified design patterns for
distributed cyber-physical systems. In: 2011 IEEE/AIAA 30th Digital Avionics
Systems Conference. pp. 7B5–1. IEEE (2011)

35. Talcott, C., Arbab, F., Yadav, M.: Soft agents: Exploring soft constraints to model
robust adaptive distributed cyber-physical agent systems. In: Software, Services,
and Systems, pp. 273–290. Springer (2015)

https://hybridsynchaadl.github.io/artifact/isola2022/sttt-paper.pdf
https://hybridsynchaadl.github.io/artifact/isola2022/sttt-paper.pdf

18

A The Entire HybridSynchAADL Specification

package DataTypes
public

with Base_Types, Data_Model;

data Vector
properties

Data_Model::Data_Representation => Struct;
Data_Model::Base_Type => (

classifier (Base_Types::Float),
classifier (Base_Types::Float));

Data_Model::Element_Names => ("x", "y");
end Vector;

data VectorArray
properties

Data_Model::Data_Representation => Array;
Data_Model::Base_Type => (classifier (Vector));

end VectorArray;

data BooleanArray
properties

Data_Model::Data_Representation => Array;
Data_Model::Base_Type => (classifier (Base_Types::Boolean));

end BooleanArray;

subprogram getDist
features

p: in parameter Vector;
q: in parameter Vector;
d: out parameter Base_Types::Float;

end getDist;

subprogram implementation getDist.l1
annex behavior_specification {**

states
s0 : initial state;
s1 : final state;

transitions
s0 -[]-> s1 { d := abs(p.x - q.x) + abs(p.y - q.y) };

**};
end getDist.l1;

end DataTypes;

package PacketDeliverySystem
public

with Drone, Packet, Clock
with Hybrid_SynchAADL;

system PacketDelivery
end PacketDelivery;

19

system implementation PacketDelivery.abst
subcomponents

drone: system Drone::Drone[];
packet: system Packet::Packet[];
clock: system Clock::Clock.impl;

connections
C1: port drone.req -> packet.req;
C2: port packet.dest -> drone.dest;
C3: port drone.oPos -> drone.iPos

{Connection_Pattern => ((One_To_One, One_To_All));};
properties

Hybrid_SynchAADL::Synchronous => true;
Period => 100ms;
Timing => Delayed applies to C1, C2, C3;
Hybrid_SynchAADL::Max_Clock_Deviation => 5ms;
Hybrid_SynchAADL::Sampling_Time => 20ms .. 25ms;
Hybrid_SynchAADL::Response_Time => 40ms .. 45ms;

end PacketDelivery.abst;
end PacketDeliverySystem;

package Clock
public

with Base_Types, Data_Model,
with Hybrid_SynchAADL;

system Clock
properties

Hybrid_SynchAADL::isEnvironment => true;
end Clock;

--- only used for measuring the global time
system implementation Clock.impl

subcomponents
time: data Base_Types::Float {Data_Model::Initial_Value => ("0");};

properties
Hybrid_SynchAADL::ContinuousDynamics => "d/dt(time) = 1;";

end Clock.impl;
end Clock;

package Drone
public

with Base_Types, DataTypes, DroneControl, DroneEnvironment;

system Drone
features

--- ports for Packet
req: out data port Base_Types::Boolean[];
dest: in data port DataTypes::Vector[];

--- ports for other drones
oPos: out data port DataTypes::Vector;
iPos: in data port DataTypes::Vector[];

end Drone;

20

system implementation Drone.impl
subcomponents

ctrl: system DroneControl::DroneControl;
env: system DroneEnvironment::DroneEnvironment.impl;

connections
--- connections between controller and drone’s environment
C1: port ctrl.set_charge -> env.charge;
C2: port ctrl.northS -> env.moveNS;
C3: port ctrl.southS -> env.moveSS;
C4: port ctrl.westS -> env.moveWS;
C5: port ctrl.eastS -> env.moveES;
C6: port ctrl.northF -> env.moveNF;
C7: port ctrl.southF -> env.moveSF;
C8: port ctrl.westF -> env.moveWF;
C9: port ctrl.eastF -> env.moveEF;

C10: port ctrl.set_hover -> env.hover;
C11: port ctrl.turn_off -> env.off;

C12: port env.oX -> ctrl.iX;
C13: port env.oY -> ctrl.iY;
C14: port env.oE -> ctrl.iE;

--- connections between ctrl and its enclosing component
C15: port ctrl.req -> req;
C16: port dest -> ctrl.dest;
C17: port ctrl.oPos -> oPos;
C18: port iPos -> ctrl.iPos;

end Drone.impl;
end Drone;

package Packet
public

with Base_Types, DataTypes;

system Packet
features

req: in data port Base_Types::Boolean[];
dest: out data port DataTypes::Vector[];

end Packet;

system implementation Packet.impl
subcomponents

packetProc: process PacketProc.impl;
connections

C1: port req -> packetProc.req;
C2: port packetProc.dest -> dest;

end Packet.impl;

process PacketProc
features

req: in data port Base_Types::Boolean[];
dest: out data port DataTypes::Vector[];

end PacketProc;

21

process implementation PacketProc.impl
subcomponents

packetThread: thread PacketThread.impl;
connections

C1: port req -> packetThread.req;
C2: port packetThread.dest -> dest;

end PacketProc.impl;

thread PacketThread
features

req: in data port Base_Types::Boolean[];
dest: out data port DataTypes::Vector[];

end PacketThread;

thread implementation PacketThread.impl
subcomponents

destination: data DataTypes::Vector;
annex behavior_specification {**

variables
droneId: Base_Types::Integer;

states
idle: initial complete state; done: final state; check: state;

transitions
idle -[on dispatch]-> check {

droneId := 0;
for(forIdx: Base_Types::Integer in 1 .. #Spec::droneNum) {

if (req[forIdx]) droneId := forIdx end if
}

};
check -[droneId <= 0]-> idle;
check -[droneId > 0]-> done { dest[droneId] := destination };

**};
end PacketThread.impl;

end Packet;

package DroneEnvironment
public

with Base_Types;
with Hybrid_SynchAADL;

system DroneEnvironment
features

oX: out data port Base_Types::Float;
oY: out data port Base_Types::Float;
oE: out data port Base_Types::Float;
moveNF: in event port; moveNS: in event port;
moveSF: in event port; moveSS: in event port;
moveEF: in event port; moveES: in event port;
moveWF: in event port; moveWS: in event port;
hover: in event port; charge: in event port; off: in event port;

properties
Hybrid_SynchAADL::isEnvironment => true;

end DroneEnvironment;

22

system implementation DroneEnvironment.impl
subcomponents

x: data Base_Types::Float;
y: data Base_Types::Float;
e: data Base_Types::Float;

connections
C1: port x -> oX;
C2: port y -> oY;
C3: port e -> oE;

modes
hovering: initial mode; charging: mode; landed: mode;
northF: mode; northS: mode; southF: mode; southS: mode;
westF: mode; westS: mode; eastF: mode; eastS: mode;

northF -[moveNF]-> northF; northS -[moveNF]-> northF;
northF -[moveSF]-> southF; northS -[moveSF]-> southF;
northF -[moveWF]-> westF; northS -[moveWF]-> westF;
northF -[moveEF]-> eastF; northS -[moveEF]-> eastF;
northF -[moveNS]-> northS; northS -[moveNS]-> northS;
northF -[moveSS]-> southS; northS -[moveSS]-> southS;
northF -[moveWS]-> westS; northS -[moveWS]-> westS;
northF -[moveES]-> eastS; northS -[moveES]-> eastS;
northF -[hover]-> hovering; northS -[hover]-> hovering;
northF -[charge]-> charging; northS -[charge]-> charging;
northF -[off]-> landed; northS -[off]-> landed;

;
southF -[moveNF]-> northF; southS -[moveNF]-> northF;
southF -[moveSF]-> southF; southS -[moveSF]-> southF;
southF -[moveWF]-> westF; southS -[moveWF]-> westF;
southF -[moveEF]-> eastF; southS -[moveEF]-> eastF;
southF -[moveNS]-> northS; southS -[moveNS]-> northS;
southF -[moveSS]-> southS; southS -[moveSS]-> southS;
southF -[moveWS]-> westS; southS -[moveWS]-> westS;
southF -[moveES]-> eastS; southS -[moveES]-> eastS;
southF -[hover]-> hovering; southS -[hover]-> hovering;
southF -[charge]-> charging; southS -[charge]-> charging;
southF -[off]-> landed; southS -[off]-> landed;

eastF -[moveNF]-> northF; eastS -[moveNF]-> northF;
eastF -[moveSF]-> southF; eastS -[moveSF]-> southF;
eastF -[moveWF]-> westF; eastS -[moveWF]-> westF;
eastF -[moveEF]-> eastF; eastS -[moveEF]-> eastF;
eastF -[moveNS]-> northS; eastS -[moveNS]-> northS;
eastF -[moveSS]-> southS; eastS -[moveSS]-> southS;
eastF -[moveWS]-> westS; eastS -[moveWS]-> westS;
eastF -[moveES]-> eastS; eastS -[moveES]-> eastS;
eastF -[hover]-> hovering; eastS -[hover]-> hovering;
eastF -[charge]-> charging; eastS -[charge]-> charging;
eastF -[off]-> landed; eastS -[off]-> landed;

westF -[moveNF]-> northF; westS -[moveNF]-> northF;
westF -[moveSF]-> southF; westS -[moveSF]-> southF;
westF -[moveWF]-> westF; westS -[moveWF]-> westF;

23

westF -[moveEF]-> eastF; westS -[moveEF]-> eastF;
westF -[moveNS]-> northS; westS -[moveNS]-> northS;
westF -[moveSS]-> southS; westS -[moveSS]-> southS;
westF -[moveWS]-> westS; westS -[moveWS]-> westS;
westF -[moveES]-> eastS; westS -[moveES]-> eastS;
westF -[hover]-> hovering; westS -[hover]-> hovering;
westF -[charge]-> charging; westS -[charge]-> charging;
westF -[off]-> landed; westS -[off]-> landed;

charging -[moveNF]-> northF; hovering -[moveNF]-> northF;
charging -[moveSF]-> southF; hovering -[moveSF]-> southF;
charging -[moveWF]-> westF; hovering -[moveWF]-> westF;
charging -[moveEF]-> eastF; hovering -[moveEF]-> eastF;
charging -[moveNS]-> northS; hovering -[moveNS]-> northS;
charging -[moveSS]-> southS; hovering -[moveSS]-> southS;
charging -[moveWS]-> westS; hovering -[moveWS]-> westS;
charging -[moveES]-> eastS; hovering -[moveES]-> eastS;
charging -[hover]-> hovering; hovering -[hover]-> hovering;
charging -[charge]-> charging; hovering -[charge]-> charging;
charging -[off]-> landed; hovering -[off]-> landed;

properties
Hybrid_SynchAADL::ContinuousDynamics =>

"d/dt(y) = #Spec::fastVel;
d/dt(e) = -#Spec::fastVel * #Spec::h;" in modes (northF),

"d/dt(y) = -#Spec::fastVel;
d/dt(e) = -#Spec::fastVel * #Spec::h;" in modes (southF),

"d/dt(x) = -#Spec::fastVel;
d/dt(e) = -#Spec::fastVel * #Spec::h;" in modes (westF),

"d/dt(x) = #Spec::fastVel;
d/dt(e) = -#Spec::fastVel * #Spec::h;" in modes (eastF),

"d/dt(y) = #Spec::slowVel;
d/dt(e) = -#Spec::slowVel * #Spec::h;" in modes (northS),

"d/dt(y) = -#Spec::slowVel;
d/dt(e) = -#Spec::slowVel * #Spec::h;" in modes (southS),

"d/dt(x) = -#Spec::slowVel;
d/dt(e) = -#Spec::slowVel * #Spec::h;" in modes (westS),

"d/dt(x) = #Spec::slowVel;
d/dt(e) = -#Spec::slowVel * #Spec::h;" in modes (eastS),

"d/dt(e) = -#Spec::k;" in modes (hovering),
"d/dt(e) = #Spec::c ;" in modes (charging),
"d/dt(e) = 0" in modes (landed);

end DroneEnvironment.impl;
end DroneEnvironment;

package DroneControl
public

with Base_Types, Data_Model, DataTypes;

system DroneControl
features

req: out data port Base_Types::Boolean[];
dest: in data port DataTypes::Vector[];
oPos: out data port DataTypes::Vector;
iPos: in data port DataTypes::Vector[];

24

iX: in data port Base_Types::Float; set_hover: out event port;
iY: in data port Base_Types::Float; set_charge: out event port;
iE: in data port Base_Types::Float; turn_off: out event port;
northF: out event port; northS: out event port;
southF: out event port; southS: out event port;
westF: out event port; westS: out event port;
eastF: out event port; eastS: out event port;

end DroneControl;

system implementation DroneControl.impl
subcomponents

proc: process DroneProcess.impl;
connections

C1: port proc.req -> req; C3: port proc.oPos -> oPos;
C2: port dest -> proc.dest; C4: port iPos -> proc.iPos;
C5: port iX -> proc.iX; C17: port proc.set_hover -> set_hover;
C6: port iY -> proc.iY; C18: port proc.set_charge -> set_charge;
C7: port iE -> proc.iE; C19: port proc.turn_off -> turn_off;
C9: port proc.northF -> northF; C13: port proc.northS -> northS;
C10: port proc.southF -> southF; C14: port proc.southS -> southS;
C11: port proc.westF -> westF; C15: port proc.westS -> westS;
C12: port proc.eastF -> eastF; C16: port proc.eastS -> eastS;

end DroneControl.impl;

process DroneProcess
features

req: out data port Base_Types::Boolean[];
dest: in data port DataTypes::Vector[];
oPos: out data port DataTypes::Vector;
iPos: in data port DataTypes::Vector[];
iX: in data port Base_Types::Float; set_hover: out event port;
iY: in data port Base_Types::Float; set_charge: out event port;
iE: in data port Base_Types::Float; turn_off: out event port;
northF: out event port; northS: out event port;
southF: out event port; southS: out event port;
westF: out event port; westS: out event port;
eastF: out event port; eastS: out event port;

end DroneProcess;

process implementation DroneProcess.impl
subcomponents

thrd: thread DroneThread.impl;
connections

C1: port thrd.req -> req; C3: port thrd.oPos -> oPos;
C2: port dest -> thrd.dest; C4: port iPos -> thrd.iPos;
C5: port iX -> thrd.iX; C17: port thrd.set_hover -> set_hover;
C6: port iY -> thrd.iY; C18: port thrd.set_charge -> set_charge;
C7: port iE -> thrd.iE; C19: port thrd.turn_off -> turn_off;
C9: port thrd.northF -> northF; C13: port thrd.northS -> northS;
C10: port thrd.southF -> southF; C14: port thrd.southS -> southS;
C11: port thrd.westF -> westF; C15: port thrd.westS -> westS;
C12: port thrd.eastF -> eastF; C16: port thrd.eastS -> eastS;

end DroneProcess.impl;

25

thread DroneThread
features

req: out data port Base_Types::Boolean[];
dest: in data port DataTypes::Vector[];
oPos: out data port DataTypes::Vector;
iPos: in data port DataTypes::Vector[];
iX: in data port Base_Types::Float; set_hover: out event port;
iY: in data port Base_Types::Float; set_charge: out event port;
iE: in data port Base_Types::Float; turn_off: out event port;
northF: out event port; northS: out event port;
southF: out event port; southS: out event port;
westF: out event port; westS: out event port;
eastF: out event port; eastS: out event port;

end DroneThread;

--- to be refined; see DroneThread_D3P2.impl
thread implementation DroneThread.impl

subcomponents
goal: data DataTypes::Vector;
chargeStation: data DataTypes::VectorArray;
packetPos: data DataTypes::VectorArray;
packetId: data Base_Types::Integer;
packetCtr: data Base_Types::Integer {Data_Model::Initial_Value => ("0");};
toChargingStation: data Base_Types::Boolean;
delivering: data Base_Types::Boolean;

end DroneThread.impl;

subprogram next
features

id: in out parameter Base_Types::Integer;
counter: in out parameter Base_Types::Integer;
size: in parameter Base_Types::Integer;

end next;

subprogram implementation next.packet
annex behavior_specification {**

variables
i: Base_Types::Integer;

states
init: initial state; done: final state;

transitions
init -[counter = 0]-> done { counter := 1 };
init -[0 < counter and counter < size]-> done {

id := id + 1; counter := counter + 1; if (id > size) id := 1 end if
};
init -[counter >= size]-> done { counter := counter + 1 };

**};
end next.packet;

subprogram chkClose
features

p: in parameter DataTypes::Vector;
pos: in parameter DataTypes::VectorArray;
cand: in parameter DataTypes::BooleanArray;

26

size: in parameter Base_Types::Integer;
thld: in parameter Base_Types::Float;
output: out parameter Base_Types::Boolean;

end chkClose;

subprogram implementation chkClose.impl
annex behavior_specification {**

variables
d: Base_Types::Float;
i: Base_Types::Integer;
r : Base_Types::Boolean;

states
s0: initial state; sl: state; sf: final state;

transitions
s0 -[]-> sl { r := false; i := 1 };
sl -[r = false and i <= size]-> sl {

DataTypes::getDist.l1 ! (p, pos[i], d);
r := d < thld and cand[i]; i := i + 1

};
sl -[otherwise]-> sf{ output := r };

**};
end chkClose.impl;

subprogram closeTo
features

currPos: in parameter DataTypes::Vector;
candidates: in parameter DataTypes::VectorArray;
size: in parameter Base_Types::Integer;
target: out parameter DataTypes::Vector;

end closeTo;

subprogram implementation closeTo.fuel
annex behavior_specification {**

variables
dist: Base_Types::Float;
minDist: Base_Types::Integer;
i: Base_Types::Integer;

states
init: initial state; loop: state; done: final state;

transitions
init -[size > 0]-> loop {

DataTypes::getDist.l1 ! (currPos, candidates[1], minDist);
target := candidates[1];
i:= 2

};
loop -[i <= size]-> loop {

DataTypes::getDist.l1 ! (currPos, candidates[i], dist);
if (dist < minDist) minDist := dist; target := candidates[i] end if;
i := i + 1

};
loop -[otherwise]-> done;

**};
end closeTo.fuel;

end DroneControl;

27

property set Spec is
droneNum: inherit aadlinteger applies to (system, process, thread);
packetNum: inherit aadlinteger applies to (system, process, thread);
stationNum: inherit aadlinteger applies to (system, process, thread);
droneId: inherit aadlInteger applies to (system, process, thread);
packetId: inherit aadlInteger applies to (system, process, thread);

close: constant aadlreal => 0.3;
near: constant aadlreal => 0.8;
maxFuel: constant aadlinteger => 200;
minFuel: constant aadlinteger => 5;
h: constant aadlinteger => 5;
c: constant aadlinteger => 1000;
k: constant aadlinteger => 2;
fastVel: constant aadlreal => 3.5;
slowVel: constant aadlreal => 2.0;
padding: inherit aadlreal applies to (system, process, thread);

end Spec;

package PacketDeliverySystem_D3P2
public

with PacketDeliverySystem, Packet_D3P2, Drone_D3P2;
with Data_Model, Spec;

system PacketDeliverySystem_D3P2 extends PacketDeliverySystem::PacketDelivery
properties

Classifier_Substitution_Rule => Type_Extension;
end PacketDeliverySystem_D3P2;

system implementation PacketDeliverySystem_D3P2.impl
extends PacketDeliverySystem::PacketDelivery.abst
subcomponents

drone: refined to system Drone_D3P2::Drone_D3P2.impl[3];
packet: refined to system Packet_D3P2::Packet_D3P2.impl[2];

connections
C1: refined to port {Connection_Set => (

[src => (1, 1); dst => (1, 1);], [src => (2, 1); dst => (1, 2);],
[src => (1, 2); dst => (2, 1);], [src => (2, 2); dst => (2, 2);],
[src => (1, 3); dst => (3, 1);], [src => (2, 3); dst => (3, 2);]);};

C2: refined to port {Connection_Set => (
[src => (1, 1); dst => (1, 1);], [src => (1, 2); dst => (2, 1);],
[src => (2, 1); dst => (1, 2);], [src => (2, 2); dst => (2, 2);],
[src => (3, 1); dst => (1, 3);], [src => (3, 2); dst => (2, 3);]);};

properties
Spec::droneNum => 3 applies to drone, packet;
Spec::packetNum => 2 applies to drone, packet;
Spec::stationNum => 1 applies to drone;
Spec::droneId => 1 applies to drone[1];
Spec::droneId => 2 applies to drone[2];
Spec::droneId => 3 applies to drone[3];
Data_Model::Dimension => (1) applies to

drone[1].ctrl.proc.thrd.packetPos, drone[2].ctrl.proc.thrd.packetPos,
drone[3].ctrl.proc.thrd.packetPos;

28

--- Drone Output Port Initialization
Data_Model::Initial_Value => ("false") applies to

drone[1].req[1], drone[1].req[2],
drone[2].req[1], drone[2].req[2],
drone[3].req[1], drone[3].req[2];

Data_Model::Initial_Value => ("{x : 2.2, y : 0.8}")
applies to drone[1].oPos;

Data_Model::Initial_Value => ("{x : 0.8, y : 2.2}")
applies to drone[2].oPos;

Data_Model::Initial_Value => ("{x : 12.0, y : 12.0}")
applies to drone[3].oPos;

--- Drone Controller Output Ports Initialization
Data_Model::Initial_Value => ("false") applies to

drone[1].ctrl.req[1], drone[1].ctrl.req[2],
drone[2].ctrl.req[1], drone[2].ctrl.req[2],
drone[3].ctrl.req[1], drone[3].ctrl.req[2];

Data_Model::Initial_Value => ("{x : 2.2, y : 0.8}")
applies to drone[1].ctrl.oPos;

Data_Model::Initial_Value => ("{x : 0.8, y : 2.2}")
applies to drone[2].ctrl.oPos;

Data_Model::Initial_Value => ("{x : 12.0, y : 12.0}")
applies to drone[3].ctrl.oPos;

--- Drone Thread Subcomponents Initialization
Data_Model::Initial_Value => (

"[{x : 5.0, y : 2.2}, {x : 2.2, y : 5.0}]") applies to
drone[1].ctrl.proc.thrd.packetPos,
drone[2].ctrl.proc.thrd.packetPos,
drone[3].ctrl.proc.thrd.packetPos;

Data_Model::Initial_Value => (
"[{x : 5.0, y : 5.0}]") applies to
drone[1].ctrl.proc.thrd.chargeStation,
drone[2].ctrl.proc.thrd.chargeStation,
drone[3].ctrl.proc.thrd.chargeStation;

Data_Model::Initial_Value => (
"{x : 0.0, y : 0.0}") applies to
drone[1].ctrl.proc.thrd.goal,
drone[2].ctrl.proc.thrd.goal,
drone[3].ctrl.proc.thrd.goal;

Data_Model::Initial_Value => ("2") applies to
drone[1].ctrl.proc.thrd.packetId,
drone[3].ctrl.proc.thrd.packetId;

Data_Model::Initial_Value => ("1") applies to
drone[2].ctrl.proc.thrd.packetId;

--- Drone Environment Subcomponents Initialization
Data_Model::Initial_Value => ("any") applies to

drone[1].env.x, drone[1].env.y,
drone[2].env.x, drone[2].env.y,
drone[3].env.x, drone[3].env.y;

Data_Model::Initial_Value => ("200.0") applies to
drone[1].env.e, drone[2].env.e, drone[3].env.e;

29

--- Packet Output Port Initialize
Data_Model::Initial_Value => ("{x : 0.0, y : 0.0}") applies to
packet[1].dest[1], packet[1].dest[2], packet.dest[3],
packet[2].dest[1], packet[2].dest[2], packet.dest[3];

--- Packet Subcomponent Initialize
Data_Model::Initial_Value => ("{x : 5.0, y : 0.0}") applies to

packet[1].packetProc.packetThread.destination;
Data_Model::Initial_Value => ("{x : 0.0, y : 5.0}") applies to

packet[2].packetProc.packetThread.destination;
end PacketDeliverySystem_D3P2.impl;

end PacketDeliverySystem_D3P2;

package Packet_D3P2
public

with Base_Types, DataTypes
with Packet;

system Packet_D3P2 extends Packet::Packet
features

req: refined to in data port Base_Types::Boolean[3];
dest: refined to out data port DataTypes::Vector[3];

properties
Classifier_Substitution_Rule => Type_Extension;

end Packet_D3P2;

system implementation Packet_D3P2.impl extends Packet::Packet.impl
subcomponents

packetProc: refined to process PacketProc_D3P2.impl;
end Packet_D3P2.impl;

process PacketProc_D3P2 extends Packet::PacketProc
features

req: refined to in data port Base_Types::Boolean[3];
dest: refined to out data port DataTypes::Vector[3];

properties
Classifier_Substitution_Rule => Type_Extension;

end PacketProc_D3P2;

process implementation PacketProc_D3P2.impl extends Packet::PacketProc.impl
subcomponents

packetThread: refined to thread PacketThread_D3P2.impl;
end PacketProc_D3P2.impl;

thread PacketThread_D3P2 extends Packet::PacketThread
features

req: refined to in data port Base_Types::Boolean[3];
dest: refined to out data port DataTypes::Vector[3];

end PacketThread_D3P2;

thread implementation PacketThread_D3P2.impl extends Packet::PacketThread.impl
end PacketThread_D3P2.impl;

end Packet_D3P2;

30

package Drone_D3P2
public

with Base_Types, DataTypes;
with Drone, DroneControl_D3P2;

system Drone_D3P2 extends Drone::Drone
features

req: refined to out data port Base_Types::Boolean[2];
dest: refined to in data port DataTypes::Vector[2];
iPos: refined to in data port DataTypes::Vector[3];

end Drone_D3P2;

system implementation Drone_D3P2.impl extends Drone::Drone.impl
subcomponents

ctrl: refined to system DroneControl_D3P2::DroneControl_D3P2.impl;
end Drone_D3P2.impl;

end Drone_D3P2;

package DroneControl_D3P2
public

with Base_Types, DataTypes;
with DroneControl;

system DroneControl_D3P2 extends DroneControl::DroneControl
features

req: refined to out data port Base_Types::Boolean[2];
dest: refined to in data port DataTypes::Vector[2];
iPos: refined to in data port DataTypes::Vector[3];

properties
Classifier_Substitution_Rule => Type_Extension;

end DroneControl_D3P2;

system implementation DroneControl_D3P2.impl
extends DroneControl::DroneControl.impl

subcomponents
proc: refined to process DroneProcess_D3P2.impl;

end DroneControl_D3P2.impl;

process DroneProcess_D3P2 extends DroneControl::DroneProcess
features

req: refined to out data port Base_Types::Boolean[2];
dest: refined to in data port DataTypes::Vector[2];
iPos: refined to in data port DataTypes::Vector[3];

properties
Classifier_Substitution_Rule => Type_Extension;

end DroneProcess_D3P2;

process implementation DroneProcess_D3P2.impl
extends DroneControl::DroneProcess.impl

subcomponents
thrd: refined to thread DroneThread_D3P2.impl;

end DroneProcess_D3P2.impl;

31

thread DroneThread_D3P2 extends DroneControl::DroneThread
features

req: refined to out data port Base_Types::Boolean[2];
dest: refined to in data port DataTypes::Vector[2];
iPos: refined to in data port DataTypes::Vector[3];

end DroneThread_D3P2;

thread implementation DroneThread_D3P2.impl
extends DroneControl::DroneThread.impl

annex behavior_specification {**
variables

cur: DataTypes::Vector;
d: Base_Types::Float;
error: Base_Types::Boolean;
collide: Base_Types::Boolean;
pos: DataTypes::VectorArray;
rec: DataTypes::BooleanArray;
extra_padding: Base_Types::Integer;

states
init: initial complete state;
select_packet, select_packet_aux: state;
move: complete state;
choose_action, choose_action_aux: state;
arrived: state;
plan: state;
find_station: state;
charge: complete state;
wait_packet: complete state;
pickup_packet: complete state; pickup_packet_aux: state;
done: final state;
fail: final state;

transitions
init -[on dispatch]-> select_packet {

cur.x := iX; cur.y := iY;
toChargingStation := false;
delivering := false

};

select_packet -[]-> select_packet_aux {
DroneControl::next.packet!(packetId, packetCtr, #Spec::packetNum)

};
select_packet_aux -[packetCtr > #Spec::packetNum]-> done { turn_off! };
select_packet_aux -[otherwise]-> choose_action {

goal := packetPos[packetId] };

move -[on dispatch]-> choose_action { cur.x := iX; cur.y := iY };

choose_action -[]-> choose_action_aux {
for(forIdx : Base_Types::Integer in 1 .. #Spec::droneNum){

pos[forIdx] := iPos[forIdx];
rec[forIdx] := forIdx != #Spec::droneId and iPos[forIdx]’fresh

};
DroneControl::chkClose.impl ! (pos[#Spec::droneId], pos, rec,

32

#Spec::droneNum, #Spec::close, error);
DataTypes::getDist.l1 ! (cur, goal, d)

};
choose_action_aux -[error]-> fail { turn_off! };
choose_action_aux -[not error and d < #Spec::near]-> arrived;
choose_action_aux -[not error and d >= #Spec::near and

iE < #Spec::minFuel]-> fail { turn_off! };
choose_action_aux -[not error and d >= #Spec::near and

iE >= d * #Spec::maxFuel * 0.1]-> plan;
choose_action_aux -[not error and d >= #Spec::near and

iE < d * #Spec::maxFuel * 0.1 and
(not toChargingStation)]-> find_station;

find_station -[]-> plan {
DroneControl::closeTo.fuel ! (cur, chargeStation,

#Spec::stationNum, goal);
toChargingStation := true

};

arrived -[not toChargingStation and not delivering]-> wait_packet {
req[packetId] := true;
oPos := cur; set_hover!

};
arrived -[not toChargingStation and delivering]-> init {

oPos := cur; set_hover!
};
arrived -[toChargingStation]-> charge {

set_charge!
};

plan -[]-> move {
extra_padding := 0.15;
DroneControl::chkClose.impl ! (cur, pos, rec, #Spec::droneId - 1,

#Spec::close + extra_padding, collide);
if (collide) set_hover!
elsif (goal.x - cur.x > 1.5) eastF!
elsif (goal.x - cur.x > 0.3) eastS!
elsif (cur.x - goal.x > 1.5) westF!
elsif (cur.x - goal.x > 0.3) westS!
elsif (goal.y - cur.y > 1.5) northF!
elsif (goal.y - cur.y > 0.3) northS!
elsif (cur.y - goal.y > 1.5) southF!
elsif (cur.y - goal.y > 0.3) southS!
else set_hover!
end if;
oPos := cur

};

charge -[on dispatch]-> choose_action {
cur.x := iX; cur.y := iY ;
toChargingStation := false;
if (not delivering)

goal := packetPos[packetId]
else

33

goal := dest[packetId]
end if

};

wait_packet -[on dispatch]-> pickup_packet {
cur.x := iX; cur.y := iY ;
oPos := cur; set_hover!

};

pickup_packet -[on dispatch]-> pickup_packet_aux {
cur.x := iX; cur.y := iY };

pickup_packet_aux -[dest[packetId]’fresh]-> choose_action {
delivering := true;
goal := dest[packetId]

};
pickup_packet_aux -[not dest[packetId]’fresh]-> select_packet;

**};
end DroneThread_D3P2.impl;

end DroneControl_D3P2;

package PacketDeliverySystem_D3P2_Patch
public

with Drone_D3P2_Patch, PacketDeliverySystem_D3P2;

system PacketDeliverySystem_D3P2_Patch
extends PacketDeliverySystem_D3P2::PacketDeliverySystem_D3P2

end PacketDeliverySystem_D3P2_Patch;

system implementation PacketDeliverySystem_D3P2_Patch.impl
extends PacketDeliverySystem_D3P2::PacketDeliverySystem_D3P2.impl

subcomponents
drone: refined to system Drone_D3P2_Patch::Drone_D3P2_Patch.impl[3];

end PacketDeliverySystem_D3P2_Patch.impl;
end PacketDeliverySystem_D3P2_Patch;

package Drone_D3P2_Patch
public

with DroneControl_D3P2_Patch, Drone_D3P2;

system Drone_D3P2_Patch extends Drone_D3P2::Drone_D3P2
end Drone_D3P2_Patch;

system implementation Drone_D3P2_Patch.impl extends Drone_D3P2::Drone_D3P2.impl
subcomponents

ctrl: refined to system
DroneControl_D3P2_Patch::DroneControl_D3P2_Patch.impl;

end Drone_D3P2_Patch.impl;
end Drone_D3P2_Patch;

package DroneControl_D3P2_Patch
public

with Base_Types, DataTypes, DroneControl, DroneControl_D3P2;

34

system DroneControl_D3P2_Patch extends DroneControl_D3P2::DroneControl_D3P2
end DroneControl_D3P2_Patch;

system implementation DroneControl_D3P2_Patch.impl
extends DroneControl_D3P2::DroneControl_D3P2.impl

subcomponents
proc: refined to process DroneProcess_D3P2_Patch.impl;

end DroneControl_D3P2_Patch.impl;

process DroneProcess_D3P2_Patch extends DroneControl_D3P2::DroneProcess_D3P2
end DroneProcess_D3P2_Patch;

process implementation DroneProcess_D3P2_Patch.impl
extends DroneControl_D3P2::DroneProcess_D3P2.impl

subcomponents
thrd: refined to thread DroneThread_D3P2_Patch.impl;

end DroneProcess_D3P2_Patch.impl;

thread DroneThread_D3P2_Patch extends DroneControl_D3P2::DroneThread_D3P2
end DroneThread_D3P2_Patch;

thread implementation DroneThread_D3P2_Patch.impl
extends DroneControl_D3P2::DroneThread_D3P2.impl

annex behavior_specification {**
variables

cur: DataTypes::Vector;
d: Base_Types::Float;
error: Base_Types::Boolean;
collide: Base_Types::Boolean;
pos: DataTypes::VectorArray;
rec: DataTypes::BooleanArray;
extra_padding: Base_Types::Integer;
sample_upper: Base_Types::Float;
sample_lower: Base_Types::Float;
response_upper : Base_Types::Float;
sample_padding: Base_Types::Float;
response_padding: Base_Types::Float;

states
init: initial complete state;
select_packet, select_packet_aux: state;
move: complete state;
choose_action, choose_action_aux: state;
arrived: state;
plan: state;
find_station: state;
charge: complete state;
wait_packet: complete state;
pickup_packet: complete state; pickup_packet_aux: state;
done: final state;
fail: final state;

transitions
init -[on dispatch]-> select_packet {

cur.x := iX; cur.y := iY;

35

toChargingStation := false; delivering := false
};

select_packet -[]-> select_packet_aux {
DroneControl::next.packet!(packetId, packetCtr, #Spec::packetNum)

};
select_packet_aux -[packetCtr > #Spec::packetNum]-> done { turn_off! };
select_packet_aux -[otherwise]-> choose_action {

goal := packetPos[packetId]
};

move -[on dispatch]-> choose_action { cur.x := iX; cur.y := iY };

choose_action -[]-> choose_action_aux {
for(forIdx : Base_Types::Integer in 1 .. #Spec::droneNum){

pos[forIdx] := iPos[forIdx];
rec[forIdx] := forIdx != #Spec::droneId and iPos[forIdx]’fresh

};
DroneControl::chkClose.impl ! (pos[#Spec::droneId], pos, rec,

#Spec::droneNum, #Spec::close, error);
DataTypes::getDist.l1 ! (cur, goal, d)

};
choose_action_aux -[error]-> fail { turn_off! };
choose_action_aux -[not error and d < #Spec::near]-> arrived;
choose_action_aux -[not error and d >= #Spec::near and

iE < #Spec::minFuel]-> fail { turn_off! };
choose_action_aux -[not error and d >= #Spec::near and

iE >= d * #Spec::maxFuel * 0.1]-> plan;
choose_action_aux -[not error and d >= #Spec::near and

iE < d * #Spec::maxFuel * 0.1 and
(not toChargingStation)]-> find_station;

find_station -[]-> plan {
DroneControl::closeTo.fuel ! (cur, chargeStation,

#Spec::stationNum, goal);
toChargingStation := true

};

arrived -[not toChargingStation and not delivering]-> wait_packet {
req[packetId] := true; oPos := cur; set_hover!

};
arrived -[not toChargingStation and delivering]-> init {

oPos := cur; set_hover!
};
arrived -[toChargingStation]-> charge { set_charge! };

charge -[on dispatch]-> choose_action {
cur.x := iX; cur.y := iY ; toChargingStation := false;
if (not delivering) goal := packetPos[packetId]
else goal := dest[packetId] end if

};

plan -[]-> move {
sample_upper := #Hybrid_SynchAADL::Sampling_Time.upper_bound;

36

sample_lower := #Hybrid_SynchAADL::Sampling_Time.lower_bound;
response_upper := #Hybrid_SynchAADL::Response_Time.upper_bound;
sample_padding := (sample_upper - sample_lower +

#Hybrid_SynchAADL::Max_Clock_Deviation * 2
+ #Hybrid_SynchAADL::Period) * #Spec::fastVel;

response_padding := (response_upper - sample_lower +
#Hybrid_SynchAADL::Max_Clock_Deviation * 2) * #Spec::fastVel * 2;

extra_padding := 0.1;
DroneControl::chkClose.impl ! (cur, pos, rec, #Spec::droneId - 1,

#Spec::close + sample_padding +
response_padding + extra_padding,
collide);

if (collide) set_hover!
elsif (goal.x - cur.x > 1.5) eastF!
elsif (goal.x - cur.x > 0.3) eastS!
elsif (cur.x - goal.x > 1.5) westF!
elsif (cur.x - goal.x > 0.3) westS!
elsif (goal.y - cur.y > 1.5) northF!
elsif (goal.y - cur.y > 0.3) northS!
elsif (cur.y - goal.y > 1.5) southF!
elsif (cur.y - goal.y > 0.3) southS!
else set_hover! end if;
oPos := cur

};

wait_packet -[on dispatch]-> pickup_packet {
cur.x := iX; cur.y := iY ;
oPos := cur; set_hover!

};

pickup_packet -[on dispatch]-> pickup_packet_aux {
cur.x := iX; cur.y := iY };

pickup_packet_aux -[dest[packetId]’fresh]-> choose_action {
delivering := true;
goal := dest[packetId]

};
pickup_packet_aux -[not dest[packetId]’fresh]-> select_packet;

**};
end DroneThread_D3P2_Patch.impl;

end DroneControl_D3P2_Patch;

	An Extension of HybridSynchAADL and Its Application to Collaborating Autonomous UAVs

